Strongly ω-Gorenstein Modules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Strongly ω-Gorenstein Modules

Authors: Jianmin Xing Wei Shao

Abstract:

We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained.

Keywords: Faithfully balanced self-orthogonal module, ω-Gorenstein module, strongly ω-Gorenstein module, finite generated.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087882

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349

References:


[1] M.Auslander, M.Bridger, Stable module theory, Mem. Amer .Math. Soc. 94(1969).
[2] E.E.Enochs, O.M.G.Jenda, Gorenstein injective and projective modules, Math.Z.220(1995)611-633.
[3] E.E.Enochs, O.M.G.Jenda, On Gorenstein injective modules,Comm. Algebra 21(1993)3489-3501.
[4] E.E.Enochs, O.M.G.Jenda, Relative Homological Algebra, de Gruyter Exp.Math.,vol.30, Walter deGruyter and Co.,Berlin, 2000.
[5] L.L.Avramov,A.Martsinkovsky, Absolute, relative and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math.Soc.85(2002) 393-440.
[6] L.W.Christensen, A.Frankild, H.Holm, On Gorenstein projective, injective and flat dimensions-A functorial description with applications, J.Algebra 302(2006)231-279.
[7] H.Holm, Gorenstein homological dimensions, J.Pure Appl. Algebra 189 (2004)167-193.
[8] D.Bennis, N.Mahdou, Strongly Gorenstein projective, injective and flat modules, J.Pure Appl. Algebra 210 (2007) 437-445.
[9] Wei.J , ω-Gorenstein modules, Communications in Algebra 36 (2008) 1817-1829.
[10] wakamatsu, T, On modules with trivial self-extensions. J. Algebra 114(1988),106-114.
[11] Auslander, M.Reiten,I. Applications of contravariantly finite subcategories. Adv.Math. 86 (1991a) 111-152.
[12] J J Rotman. An Introduction to Homological Algebra . New York: Academic Press,1979.