Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30982
4-Transitivity and 6-Figures in Finite Klingenberg Planes of Parameters (p2k−1, p)

Authors: Atilla Akpinar, Basri Celik, Suleyman Ciftci


In this paper, we carry over some of the results which are valid on a certain class of Moufang-Klingenberg planes M(A) coordinatized by an local alternative ring A := A(ε) = A+Aε of dual numbers to finite projective Klingenberg plane M(A) obtained by taking local ring Zq (where prime power q = pk) instead of A. So, we show that the collineation group of M(A) acts transitively on 4-gons, and that any 6-figure corresponds to only one inversible m ∈ A.

Keywords: projective collineation, finite Klingenberg plane

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942


[1] Baker CA, Lane ND, Lorimer JW (1991) A coordinatization for Moufang-Klingenberg Planes. Simon Stevin 65: 3-22
[2] Bacon PY (Vol. I (1976), Vol. II and III (1979)) An Introduction to Klingenberg planes. Florida: published by the author
[3] Blunck A (1991) Projectivities in Moufang-Klingenberg planes, Geom. Dedicata 40: 341-359.
[4] Blunck A (1991) Cross-ratios Over Local Alternative Rings. Res Math 19: 246-256
[5] Blunck A (1992) Cross-ratios in Moufang-Klingenberg Planes. Geom Dedicata 43: 93-107
[6] Celik B, Akpinar A, Ciftci, S.(2007) 4-Transitivity and 6-figures in some Moufang-Klingenberg planes, Monatshefte f¨ur Mathematik 152, 283- 294
[7] Cronheim A (1978) Dual numbers, Witt vectors and Hjelmslev planes. Geom Dedicata 7: 287-302
[8] Drake DA, Lenz H (1975) Finite Klingenberg Planes. Abh. Math. Sem. Univ. Hamburg 44: 70-83
[9] Drake DA, Lenz H (1985) Finite Hjelmslev planes and Klingenberg epimorphisms. Rings and geometry (Istanbul, 1984), 153-231 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 160, Reidel, Dordrecht
[10] Drake DA (1970) On n-uniform Hjelmslev planes. J. of Comb. Th. 9: 267-288
[11] Jungnickel D (1976) Klingenberg and Hjelmslev Planes. Diplomarbeit, Freie Universit¨at Berlin
[12] Jungnickel D (1979) Regular Hjelmslev Planes. J. of Comb. Th. (A) 26: 20-37
[13] Kleinfeld E (1959) Finite Hjelmslev Planes. Illiois J. Math. 3: 403-407
[14] Klingenberg W (1954) Projektive und affine Ebenen mit Nachbarelementen. Math. Z. 60: 384-406
[15] Klingenberg W (1956) Projektive Geometrien mit Homomorphismus. Math. Ann. 132: 180-200
[16] L¨uneburg H (1962) Affine Hjelmslev-Ebenen mit transitiver Translationsgruppe. Math. Z. 79: 260-288