Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Study of Aluminum, Copper and Molybdenum Pollution in Groundwater Sources Surrounding (Miduk) Shahr-E- Babak Copper Complex Tailings Dam

Authors: Maryam Kargar, Neamatolah Khorasani, Mahmoud Karami, Gholam-Reza Rafiee, Reza Naseh

Abstract:

Interpolated contour maps drawn for aluminum, copper and molybdenum in downstream monitoring boreholes of water dam in Miduk Copper Complex and the values of pH, redox potential (Eh) and distance from water dam indicate different trends of variation and behavior of these three elements in downward groundwater resources. As these maps exhibit, aluminum is dominant in the most alkaline (pH = 9-11) borehole (MB5) to water dam. The highest concentration of molybdenum is found in the nearest borehole (MB6) to water dam. Main concentration of copper is observed in the most oxidized borehole (MB3 with Eh=293.2mV). The spatial difference among sampling stations can be attributed to the existence of faults and diaclases in the geologic structure of Miduk region which causes the groundwater sampling sites to be impressed by different contamination sources (toe seepage and upper seepage water originated from different zones of tailings dump).

Keywords: Contour maps, Monitoring borehole, Toe seepage, Upper seepage.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083295

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694

References:


[1] B.J. Alloway. Heavy metals in doils. John Wiley and Sons, Inc. New York. 1990
[2] C.J. Von der Heyden, and M.G. New. "Groundwater pollution on the Zambian copperbelt: deciphering the source and the risk". Science of the Total Environment, 327, pp. 17-30. 2004.
[3] D.C. Adriano. Trace elements in terrestrial environment. Springer. Verlag, New York, 1986, p. 228.
[4] F.Ghazban, Environmental Geology. Second edition, University of Tehran, No.2575, 2006, p. 440.
[5] F.R. Siegel, Environmental Geochemistry of Potentially Toxic Metals. Springer, 2002, p. 218.
[6] G. M. Ritcey, Tailings management: Problems & Solutions in the mining industry. Amsterdam; New York, Elsevier. ISBN: 0444873740 6, 1989, P. 970.
[7] J. Shahabpour, and M. Doorandish,. "Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran". Environmental Monitoring Assessment, 141, pp.105-120. 2008.
[8] J.O. Niragu,. Copper in the environment. Wiley, New York. 1979.
[9] M. Kargar. "The effect of the thickened tailings of the concentrator plant of the Miduk copper complex on groundwater pollution". University of Tehran. Master thesis,2010.
[10] M. Wireman. "Potential water quality impact of hard rock mining- EPA update". Journal of groundwater monitoring and remediation, 21(3), pp.40-48, 2001.
[11] M.J. Gibson, and J.G.Farmer. "Chemical partitioning of trace metal contaminants in urban street dirt". The Science of the Total Environment, 33, pp.49-57, 1984.
[12] P.M. Heikkinen, and M.L. Ra┬¿isa┬¿nen, "Heavy metal and As fractionation in sulphide mine tailingsÔÇöindicators of sulphide oxidation in active tailings impoundments". Applied Geochemistry (submitted), 2008.
[13] P. M. Heikkinen, M. L. Ra¨isa¨nen, and R. H. Johnson, "Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: acid mine drainage versus neutral mine drainage". Mine Water and Environment, 28, pp.30-49, 2009.
[14] S. Xu, , C. Yu, , and Y. Hiroshiro, "Migration behavior of Fe, Cu, Zn and Mo in alkaline tailings from Lanjiagou porphyry Molybdenum deposits, Northeast China," Memoirs of faculty of engineering. Kyushu University, 70(2), pp. 19-31. 2010.
[15] W. Petruk,. "Applied mineralogy to tailings and waste rock pile- sulfide oxidation reactions and remediation of acidic water rainage," in Applied mineralogy in the mining industry Petruk, W. Springer, Amsterdam, pp. 201-225, 2000.
[16] W.D. Robertson, D.W. Blowes, and C.J. Hanton-Fong,. "Sulphide oxidation related to water table depth at two Sudbury, Ontario tailings impoundments of differing physiography," in Proc. 4th international conference on acid rock drainage, Vancouver, BC, pp. 621-629. 1994.