Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Omer F. Can and Nevin Celik

Abstract—In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known k-ε model is applied as the turbulence model. Reynolds number is in the range of 10^4 to 10^5 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15% in the front face case, while it enhanced up to 28% in the rear face case.

Keywords—External flow, semi-cylinder obstacle, heat transfer, friction.

I. INTRODUCTION

The flow past an obstacle has been a major research topic in fluid mechanics, not only because of the geometric effect, but also because of practical importance in engineering. Especially if there is heat transfer, between the obstacle and the fluid, the topic gains great importance. For that, the flow over a simple geometry, such as a circular cylinder or a sphere has often been investigated numerically and experimentally, and so there are numerous articles in the literature.

In most of the articles, in order to enhance the heat transfer, the geometry of the obstacle was optimized. The mostly analyzed geometries were triangles [1-7], rectangle blocks [8-10], and some other rectilinear protruding elements [11-17].

Both natural and mixed convections were analyzed in the obstructed channel flows. For example, Bakkas et al [8, 9] investigated the natural convection using rectangular blocks with a uniform heat flux. Dogan and Sivrioglu [11, 12] investigated natural convection heat transfer in an obstructed horizontal channel.

The geometry of the obstacle on which an external flow passes has great importance. We will focus on two rarely-used geometries; a front face of semi-cylinder, and rear face of a semi-cylinder. Therefore, the following analysis examines steady, incompressible turbulent flow passing (i) a semi-cylinder placed in a channel at right angle to the oncoming fluid, and then passing (ii) the inverted semi-cylinder. Just for reading facility, we will call those two cases; Case 1 and Case 2. The channel flow without any obstacle is also analyzed for comparisons, which is called Case 0.

A. Method

Numerical analysis is carried out by using ANSYS-CFX 11.0 software package [19]. CFX is one of many available commercial software codes for executing Computational Fluid Dynamics (CFD) calculations. The code consists of four separate but connected components. In CFX –Workbench the geometry is created. The geometry is meshed with the aid of CFX-Mesh. The boundary conditions are applied in CFX-Pre. Also included in CFX-Pre is the solver control in which the solver is chosen as well as the convergence criteria. Then CFX-Solve is used to obtain the solution.

The fluid flow is assumed steady, incompressible and 2-D. A key parameter to predict the flow and heat transfer characteristics of this external flow is the Reynolds number, which is based on cylinder diameter (D), kinematic viscosity of the air (ν) and mean velocity of the fluid (U). For high values of Re such as 10^4-10^5 the flow is turbulent and air is used as the flowing fluid ($Pr = 0.701$). The k-ε model which is the best-known turbulence model involving additional differential equations is used as the turbulence model. The turbulence intensity is 10%.

B. Governing Equations

To solve the problem three sets of equations; continuity, momentum and energy equations are required. In this study, simple algorithm is used for the finite volume approach [18]. The z component of Navier-Stokes equations is missed since the flow is 2-D.

Continuity

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

(1)

x- momentum

\[
\left(\frac{\partial (u^2 + \tau_{uv})}{\partial x} + \frac{\partial \tau_{ux}}{\partial x} \right) = \frac{\partial P}{\partial x} + \frac{1}{Re} \left(1 + \frac{v_1}{v} \right) \nabla^2 u
\]

(2)

y -momentum equation

\[
\left(\frac{\partial (uv)}{\partial x} + \frac{\partial (v^2)}{\partial y} \right) = \frac{\partial P}{\partial y} + \frac{1}{Re} \left(1 + \frac{v_1}{v} \right) \nabla^2 v
\]

(3)

Energy equation

\[p \frac{\partial (u^2 + v^2)}{\partial x} + p \frac{\partial (uv)}{\partial y} = \frac{\partial}{\partial x} \left(\frac{1}{\rho} \frac{\partial u}{\partial x} \right) + \frac{1}{\rho} \frac{\partial}{\partial y} \left(\frac{1}{\rho} \frac{\partial v}{\partial y} \right) + f_x - g_y
\]

(4)
\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{\text{RePr}} \left(1 + \frac{\alpha}{\alpha_t} \right) \nabla^2 T
\]

(4)

\[\kappa \text{ and } \varepsilon \text{ equations for } \kappa-\varepsilon \text{ model are [19, 20]}
\]

\[
\frac{\partial \kappa}{\partial t} + u \frac{\partial \kappa}{\partial x} + v \frac{\partial \kappa}{\partial y} = \frac{1}{\text{Re}} \left(\frac{\nu_1}{\sigma_k} \right) \nabla^2 \kappa + P - \varepsilon \]

(5)

\[
\frac{\partial \varepsilon}{\partial t} + u \frac{\partial \varepsilon}{\partial x} + v \frac{\partial \varepsilon}{\partial y} = \frac{1}{\text{Re}} \left(\frac{\nu_1}{\sigma_\varepsilon} \right) \nabla^2 \varepsilon - C_1 S_e - \rho C_2 \frac{\varepsilon^2}{\kappa}
\]

(6)

where \(P \) in Eq.(5) means the production of turbulent kinetic energy [20].

Wall friction coefficient, local Nusselt number and average Nusselt number were found as [2]

\[
C_f = \frac{\tau_w}{\rho u_*^2/2}
\]

(7)

\[
\text{Nu}(x) = \left. \frac{\partial T}{\partial y} \right|_{y* \to 0}
\]

(8)

\[
\text{Nu} = \frac{L}{\int_0^L \text{Nu}(x) dx}
\]

(9)

where \(T^* = (T(x,0) - T_{\infty})/T_c - T_{\infty} \) and \(y^* = y/L \) represent dimensionless temperature and dimensionless distance respectively [2].

C. Physical Model and Boundary Conditions

In Fig. 1(a), the flow passing the front face of a semi-cylinder is seen, which is already called Case 1. The flow passing an inverted semi-cylinder or rear side of the semi-cylinder, named Case 2, is seen in Fig 1(b).
TABLE I
INFORMATION ABOUT THE MESH STRUCTURE

<table>
<thead>
<tr>
<th>Cases</th>
<th>Element</th>
<th>Node</th>
<th>Layer number on the walls</th>
<th>Height of first element on the walls</th>
<th>y+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 0</td>
<td>26430</td>
<td>52236</td>
<td>50</td>
<td>2.401x10^8</td>
<td>1</td>
</tr>
<tr>
<td>Case 1</td>
<td>22371</td>
<td>43892</td>
<td>50</td>
<td>2.035x10^8</td>
<td>1</td>
</tr>
<tr>
<td>Case 2</td>
<td>29267</td>
<td>57702</td>
<td>50</td>
<td>2.392x10^8</td>
<td>1</td>
</tr>
</tbody>
</table>

At the inlet of the solution domain, a uniform velocity is imposed. The distance from the entrance of the channel to the obstacles is 8D, total length of the channel is 32D. The temperature of the air at the inlet is considered as $T = 289$ K.

The upper wall of the channel is assumed adiabatic, while the bottom wall has 450 K constant temperature. Wall boundary condition is applied to the borders of the obstacle. The exit of the channel is outlet and therefore has zero static pressure.

II. RESULTS AND DISCUSSIONS

As already mentioned, for verification Case 0 is handled. Fig. 3 represents the variation of local Nu along the channel length (L/D) for various Reynolds numbers, when Case 1 is used as the obstacle. Similarly, Fig. 4 shows the Nu versus L/D variations with respect to Re, for Case 2.

As expected, local Nu numbers have a sharp increase around the obstacle ($L/D\geq8$) for both cases. The highest local Nu is observed at $L/D\geq10$ which represents the upper side of the obstacles because local Nu increases with increasing turbulence level on the upper side of the obstacle. The effect of the geometry affects the turbulence level, so does the heat transfer. It is clear that, Case 2 has much more high heat transfer than Case 1 has. Fig. 5 shows the comparisons of local Nus for both Cases 1 and 2 and also the empty channel case (Case 0).

Through the channel at $L/D\leq8$, because of the absence of any obstacle, local Nu gradually decreases due to the transfer of heat transfer from fluid and wall. For the same reason, Nu reaches minimum value at the exit of the channel. Because of the unsteady flow around the obstacle, the effects of turbulence is the highest as previously mentioned. Also the vortices consisting at the rear of the obstacle are effective on the heat transfer.

The average Nu numbers, \bar{Nu} are presented by a listing table. Table II shows the \bar{Nu} values for all test cases. Case 2 has the highest Nu as expected from the local values.

![Fig. 5 Comparison of Nu numbers at Re = 40000](image)

![Fig. 3 Variation of Nu numbers versus Re numbers for Case 1](image)

![Fig. 4 Variation of Nu numbers versus Re numbers for Case 2](image)

<table>
<thead>
<tr>
<th>Table II</th>
<th>VARIATION OF AVERAGE NUSSELT NUMBER VERSUS REYNOLDS NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>Case 0</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>10000</td>
<td>43.87</td>
</tr>
<tr>
<td>20000</td>
<td>82.14</td>
</tr>
<tr>
<td>40000</td>
<td>155.94</td>
</tr>
<tr>
<td>100000</td>
<td>359.16</td>
</tr>
</tbody>
</table>

In Fig. 6, variation of local wall friction coefficients, C_f. Are presented. For Case 0, the friction gradually decreases along the channel wall. However, when Case 1 or 2 is considered, a sharp increase generates. This is because the more resistance encounters exposure with obstacles of fluid. Case 2 has higher wall coefficient C_f than Case 1 has, because, the fluid after striking to front stagnation point will be more effective than the flow at radial direction.
The average C_f is presented by a listing table (Table III). The C_f increases with increasing Re numbers.

TABLE III

VARIATION OF AVERAGE WALL FRICTION COEFFICIENTS VERSUS REYNOLDS NUMBER

<table>
<thead>
<tr>
<th>Re</th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.00048</td>
<td>0.00063</td>
<td>0.00077</td>
</tr>
<tr>
<td>20000</td>
<td>0.00168</td>
<td>0.00219</td>
<td>0.00274</td>
</tr>
<tr>
<td>40000</td>
<td>0.00580</td>
<td>0.00750</td>
<td>0.00950</td>
</tr>
<tr>
<td>100000</td>
<td>0.03038</td>
<td>0.03834</td>
<td>0.05051</td>
</tr>
</tbody>
</table>

Finally the velocity contours are presented to have a better understanding about the flow around the obstacles. The contour plots are presented in Fig. 7.

It is clearly seen in Fig. 7 that, the back side of the obstacles has low-velocity areas. Although the Case 2 has a larger low-velocity area, it has high velocity areas especially at the up and down sides. These plots explain why higher heat transfer is observed for Case 2.

REFERENCES

[12] M. Dogan, M. Sivrioglu, “Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal...

[18] ANSYS 11.0 (Academic Teaching Introductory) command References and gui.
