Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32128
Rational Structure of Cable Truss

Authors: V. Goremikins, K. Rocens, D. Serdjuks


One of the main problems of suspended cable structures is initial shape change under the action of non uniform load. The problem can be solved by increasing of weight of construction or by using of prestressing. But this methods cause increasing of materials consumption of suspended cable structure. The cable truss usage is another way how the problem of shape change under the action of non uniform load can be fixed. The cable trusses with the vertical and inclined suspensions, cross web and single cable were analyzed as the main load-bearing structures of suspension bridge. It was shown, that usage of cable truss allows to reduce the vertical displacements up to 32% in comparison with the single cable in case of non uniformly distributed load. In case of uniformly distributed load single cable is preferable.

Keywords: Cable trusses, Non uniform load, Suspension bridge, Vertical displacements.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598


[1] European Committee for Standardization, Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges, Brussels, 2004
[2] Fiberline Composites A/S, Design Manual. - Middelfart: Fiberline Composites A/S, 2002.
[3] Fletcher R., Practical methods of optimization, 2nd edition, London: John Willey &Sons Inc., 2000.
[4] Gogol M., "Shaping of Effective Steel Structures," in Scientific proceedings of Rzeszow Technical University, Rzeszow: Rzeszow Technical University, 2009. (Nr. 264), p. 43-56.
[5] Goremikins V., Serdjuks D., "Rational Structure of Trussed Beam," in Proc. The 10th International Conference "Modern Building Materials, Structures and Techniques", Vilnius: Vilnius Gediminas Technical University, 2010, pp. 613-618.
[6] Goremikins V., Rocens K., Serdjuks D., "Rational Structure of Composite Trussed Beam," in Proc. The 16th International Conference "Mechanics of composite materials, Riga: Institute of Polymer Mechanics, 2010, p. 75.
[7] Montgomery D.C. Design and analysis of experiments, 5th edition, New York: John Willey &Sons Inc., 2001.
[8] Serdjuks, D.; Rocens, K., "Decrease the Displacements of a Composite Saddle-Shaped Cable Roof," Mech. Compos. Materials, Vol. 40, No5., 2004.
[9] Shen, Z.Y.; Li, G.Q.; Zhang, Q.L., "Advances in steel structures," in Proc. Fourth International Conference, Shanghai, China, 2005.
[10] Wai-Fah Chen, Eric M. Lui, Handbook of structural engineering, New York, 2005.
[11] Барабаш М, Лазнюк М., Мартынова, М., Пресняков, Н., Современные технологии расчета и проектирования металлических и деревянных конструкций. (Modern Designing and Calculation Techniques of Steel and Timber Structures), Москва: Издательство Асоции строительных вузов, 2008.
[12] Бахтин С., Овчинников И., Инамов Р., Висячие и вантовые мосты (Suspension and Cable Bridges), Саратов: Сарат. гос. техн. ун-т, 1999.
[13] Беленя Е., Стальные конструкции: Спецкурс (Steel Structures: Special Course), Москва: Стройиздат, 1991.
[14] Ведеников Г., Металлические конструкции: Общий курс(Steel Structures: General Course), Москва: Стройиздат, 1998.
[15] Городецкий А., Евзоров И., 2005. Компьютерные модели конструкций (Structures computer models), Киев: Факт, 2005.
[16] Ермолов В., Инженерные конструкции (Engineering Structures), Москва: Высшая школа, 1991.
[17] Кирсанов М. Висячие системы повышенной жесткости (Suspension Structures with Increased Stiffness), Москва: Стройиздат, 1983.
[18] Михайлов В., Предварительно напряженные комбинированные и вантовые конструкции (Prestressed Combined and Cable Structures), Москва: ACB, 2002.
[19] Петропавловский А., Вантовые мосты (Cable Bridges), Москва: Транспорт, 1985.
[20] Смирнов В., Висячие мосты больших пролетов (Large Span Suspension Bridges), Москва: Высшая школа, 1970.
[21] Трущев А., Пространственные металлические конструкции (Spatious Steel Structures), Москва: Стройиздат. 1983.