Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31903
Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.

Keywords: Buildings, insulating properties, natural materials of plant origin, thermal performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537

References:


[1] N. Amir, K. Abidin, et F. Shiri, « Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite », Procedia Eng., vol. 184, p. 573‑580, déc. 2017, doi: 10.1016/j.proeng.2017.04.140.
[2] N. Amir, K. Abidin, et F. Shiri, « Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite », Procedia Eng., vol. 184, p. 573‑580, déc. 2017, doi: 10.1016/j.proeng.2017.04.140.
[3] M. Kaboré, « Enjeux de la simulation pour l’étude des performances énergétiques des bâtiments en Afrique sub-saharienne », phdthesis, Institut international d’ingénierie de l’eau et de l’environnement, 2015.
[4] A. Aslani, A. Bakhtiar, et H. Akbarzadeh, « Energy-Efficiency Technologies in the Building Envelope: Life Cycle and Adaptation Assessment », J. Build. Eng., vol. 21, sept. 2018, doi: 10.1016/j.jobe.2018.09.014.
[5] T. Soubdhan, « Building solar protection under tropical climate: an experimental study of roof insulation; Protection solaire des batiments en climat tropical humide: etude experimentale de l’isolation en toiture », déc. 2003, Consulté le: févr. 05, 2021. (En ligne). Disponible sur: https://www.osti.gov/etdeweb/biblio/20520201.
[6] M. Zafaranchi, « Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey », Int. J. Energy Environ. Eng., vol. 14, no 10, p. 253‑259, sept. 2020.
[7] E. Cuce, C.-H. Young, et S. B. Riffat, « Thermal performance investigation of heat insulation solar glass: A comparative experimental study », Energy Build., vol. 86, p. 595‑600, janv. 2015, doi: 10.1016/j.enbuild.2014.10.063.
[8] F. Miranville, « Contribution à l’Etude des Parois Complexes en Physique du Bâtiment : Modélisation, Expérimentation et Validation Expérimentale de Complexes de Toitures incluant des Produits Minces Réfléchissants en climat tropical humide », Theses, Université de la Réunion, 2002.
[9] N. Dujardin, « Un Materiau Biosource de Choix : Les Fibres naturelles. Caractérisations et Applications », in 25èmes Journées Scientifiques de l’Environnement - L’économie verte en question, Créteil, France, févr. 2014, vol. JSE-2014, no 01, Consulté le: févr. 03, 2021. (En ligne). Disponible sur: https://hal.archives-ouvertes.fr/hal-00978360.
[10] « Guide_des_materiaux_ isolants », p. 32.
[11] A. Abdou et I. Budaiwi, « The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content », Constr. Build. Mater., vol. 43, p. 533‑544, juin 2013, doi: 10.1016/j.conbuildmat.2013.02.058.
[12] C. Lorrette, « Outils de caractérisation thermophysique et modèles numériques pour les composites thermostructuraux à haute température », p. 243.
[13] P. Meukam, « Valorisation des Briques de Terre Stabilisees en Vue de L’isolation Thermique de Batiments », p. 157.
[14] S. A. Al-Ajlan, « Measurements of thermal properties of insulation materials by using transient plane source technique », Appl. Therm. Eng., vol. 26, no 17, p. 2184‑2191, déc. 2006, doi: 10.1016/j.applthermaleng.2006.04.006.
[15] Khaled Chaffar, « Thermographie Active Appliquee a la Caracterisation in Situ de Parois de Batiment.
[16] I. Traoré, « Transferts de chaleur et de masse dans les parois des bâtiments à ossature bois », p. 236.
[17] B. Samba, « Etude du champ thermique dans une plaque : Application à la mesure de la conductivité thermique des matériaux », p. 116.
[18] M. Aghahadi, « Etude expérimentale et modélisation physique des transferts couplés chaleur-humidité dans un isolant bio-sourcé. », p. 156.
[19] S. Dubois et F. Lebeau, « Design, construction and validation of a guarded hot plate apparatus for thermal conductivity measurement of high thickness crop-based specimens », Mater. Struct., vol. 48, janv. 2013, doi: 10.1617/s11527-013-0192-4.
[20] F. Asdrubali, F. D’Alessandro, et S. Schiavoni, « A review of unconventional sustainable building insulation materials », Sustain. Mater. Technol., vol. 4, juin 2015, doi: 10.1016/j.susmat.2015.05.002.
[21] G. Promis, « Hygrothermal performance of a straw bale building: In situ and laboratory investigations », oct. 2015. doi: 10.13140/RG.2.1.5115.9763.
[22] T. Ashour, H. Georg, et W. Wu, « Performance of straw bale wall: A case of study », Lancet, vol. 43, p. 1960‑1967, août 2011, doi: 10.1016/j.enbuild.2011.04.001.
[23] J. Wihan, « Humidity in straw bale walls and its effect on the decomposition of straw », p. 271.
[24] A. Louis, A. Evrard, B. Biot, L. Courard, et F. Lebeau, « De l’expérimentation à la modélisation des propriétés hygrothermiques de parois isolées en paille », undefined, 2013. /paper/De-l%E2%80%99exp%C3%A9rimentation-%C3%A0-la-mod%C3%A9lisation-des-de-en-Louis-Evrard/cd79331f31f785d4b8600086cea14e50aa32369c (consulté le févr. 04, 2021).
[25] M. Aghahadi, « Etude expérimentale et modélisation physique des transferts couplés chaleur-humidité dans un isolant bio-sourcé. », p. 156.
[26] C. Gobbé, J. Gounot, et M. Bazin, « Mise en oeuvre de la méthode flash pour la mesure de diffusivité thermique sur des matériaux liquides ou fondus en fonction de la température. Application aux polymères », Rev. Phys. Appl., vol. 24, no 12, p. 1119‑1128, 1989, doi: 10.1051/rphysap:0198900240120111900.
[27] Roberto Ricciua, Luigi A. Besalducha, Alessandra Galatiotob, Giuseppina Ciullab. Thermal characterization of insulating materials. Renewable and Sustainable Energy Reviews. Fevrier 2018 ; 82 : 1765-1773.
[28] L. Adityaa, TMI. Mahlia, B. Rismanchi , H.M. Ng , M.H. Hasane , HSC. Metselaar, Oki Murazaf, HB. Aditiya. A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews. 2017, 73: 1352-1365.
[29] Francesco Asdrubali, Francesco D'Alessandro, Samuele Schiavoni. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies. 2015; 4 :1-17
[30] Dr. Mohammad S. Al-Homoud. Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment 40 (2005) 353–366
[31] Günther Kain. Design of Tree Bark Insulation Boards: Analysis of Material, Structure and Property Relationships. These de doctorat. Technischen Universität München : 2017
[32] S. Schiavoni, F. D'Alessandro, F. Bianchi, F. Asdrubali. Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews. 62: (2016) 988-1011.
[33] A.M. Papadopoulos. State of the art in thermal insulation materials and aims for future developments. Energy and Buildings 37 (2005) 77–86.