Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment

Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul

Abstract:

The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.

Keywords: Ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316859

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371

References:


[1] N. Hansen, “Hall-Petch relation and boundary strengthening”, Scripta Materialia, Volume 51, pp. 801 – 806, 2004.
[2] V.G. Gavriljuk, “Decomposition of cementite in pearlitic steel due to plastic deformation”, Materials Science and Engineering, Volume A345, pp. 81 – 89, 2003.
[3] X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu, “Microstructure and strengthening mechanism in cold-drawn pearlitic steel wire”, Acta Materialia, Volume 59, pp. 3422 – 3430, 2011.
[4] H. Berns, C. Broeckmann, D. Weichert, “Fracture of Hot Formed Ledeburitic Chromium Steels. Engineering Fracture Mechanics”, Volume 58, pp. 311 – 325, 1997.
[5] J. Sobotová, P. Jurči, I. Dlouhý, “The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel”, Materials Science and Engineering, Volume A652, pp. 192 – 204, 2016.
[6] A. I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A. P. Skoblik, V. A. Sirosh, J. N. Petrov, V. G. Gavriljuk, “Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel”, Materials Science and Engineering, Volume A527, pp. 7027 – 7039, 2010.
[7] D. Das, A. K. Dutta, K. K. Ray, “Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness”, Materials Science and Engineering, Volume A527, pp. 2182 – 2193, 2010.
[8] D. Das, K.K. Ray, “Structure-property correlation of sub-zero treated AISI D2 steel”, Materials Science and Engineering, Volume A541, pp. 45 – 60, 2012.
[9] F. Meng, K. Tagashira, R. Azuma, H. Sohma, “Role of Eta-carbide Precipitation´s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment”, ISIJ International, Volume 34, pp. 205 – 210, 1994.
[10] D. Das, K. K. Ray, A. K. Dutta, “Influence of temperature of sub-zero treatments on the wear behaviour of die steel”, Wear, Volume 267, pp. 1361 – 1370, 2009.
[11] D. Das, A. K. Dutta, K. K. Ray, “Influence of varied cryotreatment on the wear behaviour of AISI D2 steel”, Wear, Volume 266, pp. 297 – 309, 2009.
[12] A. Akhbarizadeh, A. Shafyei, M. A. Golozar, “Effects of cryogenic treatment on wear behaviour of D6 tool steel”, Materials and Design, Volume 30, pp. 3259 – 3264, 2009.
[13] D. Das, A. K. Dutta, K. K. Ray, “Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel”, Cryogenics, Volume 49, pp. 176 – 184, 2009.
[14] K. Amini, A. Akhbarizadeh, S. Javadpour, “Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment”, Vacuum, Volume 86, pp. 1534 – 1540, 2012.
[15] M. Villa, K. Pantleon, M. A. J. Somers, “Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering”, Acta Materialia, Volume 65, pp. 383 – 392, 2014.
[16] D. Das, R. Sarkar, A. K. Dutta, K. K. Ray, “Influence of sub-zero treatments on fracture toughness of AISI D2 steel”, Materials Science and Engineering, Volume A528, pp. 589 – 603, 2010.
[17] O. N. C. Uwakweh, J. M. R. Génin, J. F. Silvain, “Electron Microscopy Study of the Aging and First Stage of Tempering of High-Carbon Fe-C Martensite”, Metallurgical Transactions, Volume 22A, pp. 797 – 806, 1991.
[18] M. Nemec, P. Jurči, P. Kosnáčová, M. Kučerová, “Evaluation of structural isotropy of Cr-V ledeburitic steel made by powder metallurgy of rapidly solidified particles, Kovove Materialy/Metallic Materials”, Volume 54, pp. 453–462, 2016.
[19] P. Bílek, J. Sobotová, P. Jurči, “Evaluation of the microstructural changes in Cr-V ledeburitic tool steel depending on the austenitization temperature”, Materiali in Tehnologije/Materials and Technology, Volume 45, pp. 489–493, 2011.
[20] P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, “Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel”, Vacuum, Volume 111, pp. 92 – 101, 2015.
[21] J. Ptačinová, V. Sedlická, M. Hudáková, I. Dlouhý, P. Jurči, “Microstructure – Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment”, Materials Science and Engineering, Volume A702, pp. 241–258, 2017.
[22] P. Jurči, “Sub-Zero Treatment of Cold Work Tool Steels – Metallurgical Background and the Effect on Microstructure and Properties. HTM Journal of Heat Treatment and Materials”, Volume 72, pp. 62 – 68, 2017.
[23] L. Cheng, C.M. Brakman, B.M. Korevaar, E.J. Mittemeijer, “The Tempering of Iron-Carbon Martensite; Dilatometric and Calorimetric Analysis. Metallurgical Transactions”, Volume 19A, pp. 2415 – 2426, 1988.
[24] S. Li, N. Min, J. Li, X. Wu, Ch. Li, L. Tang, “Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method”, Materials Science and Engineering, Volume A575, pp. 51 – 60, 2013.
[25] S. Li, N. Min, L. Deng, X. Wu, Y. Min, H. Wang, “Influence of deep cryogenic treatment on internal friction behaviour in the process of tempering”, Materials Science and Engineering, Volume A528, pp. 1247 – 1250, 2011.
[26] P. Jurči, M. Kusý, J. Ptačinová, V. Kuracina, P. Priknerová, “Long-term sub-zero treatment of P/M Vanadis 6 ledeburitic tool steel - a preliminary study”, Manufacturing Technology, Volume 15, pp. 41 – 47, 2015.
[27] M. Pasak, R. Cicka, P. Bílek, P. Jurči, L. Čaplovič, “Study of Phase Transformations in Cr-V Tool Steel”, Materiali in Tehnologije/Materials and Technology, Volume 48, pp. 693 – 696, 2014.