Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study
Authors: B. Guezzen, M. A. Didi, B. Medjahed
Abstract:
An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.
Keywords: Adsorption, dye, factorial design, kinetic, organo-bentonite.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316193
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495References:
[1] D. Robert, S. Parra, C. Pulgarin, A. Krzton, J. V. Weber, Appl. Surf. Sci. vol.167, pp.51-58, 2000.
[2] C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, J. Photochem. Photobiol. A: Chem. vol.158, pp. 27-36, 2003.
[3] L. Rehn, Blasengeschwulste bei Fuschin arbeiten, Arch. Klin Chir., vol. 50 pp. 588, 1895.
[4] B. Y. Chen, Toxicity assessment of aromatic amines to Pseudomonas luteola: chemostat pulse technique and doseresponse analysis, Proc. Biochem., vol. 41, pp.1529–1538, 2006.
[5] R. D. Combes, R. B. Haveland- Smith, A review of the genotoxicity of food, drug, and cosmetic colour and other azo, triphenylmethane and xanthenes dyes. Mutation Res. Rev. Genetic Toxicol., vol. 198, pp.101-243, 1982.
[6] S. Tsuda, N. Matsusa ka, H. Madarame, S. Uen o, N. Susa, K. Ishida, N. Kawamura, K. Sekihashi et Y. F. Sasa ki, The comet assay in eight mouse organs: result with 24 azo compounds. Mutation Res., vol. 465, pp. 11-26, 2000.
[7] M. Hasani Zonoozi, M. R. A. Moghaddam1, M. Arami, Removal of acid red 398 dye from aqueous solutions by coagulation/flocculation process, Environmental Engineering and Management Journal, vol.7, pp. 695-699, 2008.
[8] S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini, H. Hamitouche, Electrocoagulation process applied to wastewater containing dyes from textile industry, Chemical Engineering and Processing: Process Intensification, vol. 49, pp.1176-1182, 2010.
[9] L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites, Chemical Engineering Journal vol. 181– 182, pp.72– 79, 2012.
[10] Z. Karim, AP. Mathew, M. Grahn, J. Mouzon, K. Oksman, Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym, vol. 112, pp. 668-676, 2014.
[11] I. Arslan-Alaton, B. H. Gursoy, Jens-Ejbye Schmidt, Advanced oxidation of acid and reactive dyes: Effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes Pigm, vol. 78, pp. 117–130, 2008.
[12] J. Fan, X. Hu, Z. Xie, K. Zhang, J. Wang, Photocatalytic degradation of azo dye by novel Bi-based photocatalyst Bi4TaO8I under visible-light irradiation, Chem Eng J, vol. 179 pp. 44-51, 2012.
[13] L. Tan, S. Ning, X. Zhang, V. Shi, Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresour Technol, vol. 138, pp. 307-313, 2013.
[14] DM. Cao, X. Xiao, YM. Wu, XB. Ma, MN. Wang, YY. Wu, DL. Du, Role of electricity production in the anaerobic decolorization of dye mixture by exoelectrogenic bacterium Shewanella oneidensis MR-1, Bioresour Technol, vol. 136 pp.176-181, 2013.
[15] V. Sivakumar, M. Asaithambi, P. Sivakumar3 and N. Gopal, Removal of Congo Red Dye Using an Adsorbent Prepared from Martynia annua, L. Seeds, American Chemical Science Journal, vol. 4 pp. 424-442, 2014.
[16] M. Szlachta and P. Wójtowicz, Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes, water science & technology, vol. 68, pp. 2240-2248, 2013.
[17] F. Aries, TK Sen, Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study, Colloids Surf A, vol. 348, pp. 100-108, 2009.
[18] E. Errais, J. Duplay, M. Elhabiri, M. Khodja, R. Ocampo, Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism, Colloids Surf A Physicochem Eng Asp, vol. 403, pp. 69-78, 2012.
[19] L. B. De Paiva, A. R. Morales, F. R. Valenzuela Díaz, Organoclays: properties, preparation and applications, Appl. Clay Sci. vol. 42, pp. 8-24, 2008.
[20] B. Makhoukhi, M.A. Didi, D. Villemin, Modification of bentonite with diphosphonium salts: synthesis and characterization, Mater.Lett. vol. 62, pp. 2493-2496, 2008.
[21] B. Makhoukhi, M. Djab, M. A. Didi, Adsorption of Telon dyes onto bis-imidazolium modified bentonite in aqueous solutions, Journal of Environmental Chemical Engineering, vol. 3, pp.1384-1392, 2015.
[22] Y. S. Ho, G. McKay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash, J. Environ. Sci. Health A, vol. 34, pp.1179-1204, 1999.
[23] G. McKay, YS. Ho, Pseudo second order model for sorption processes Process Biochem vol. 34, pp. 451-465, 1999.
[24] Z. Cheng, L. Zhang, X. Guo, X. Jiang, T. Li, Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.137, pp. 1126-1143, 2015.
[25] A. Hassani, A. Khataee, S. Karaca, M. Karaca, M. Kıranşan, Adsorption of two cationic textile dyes from water with modified nanoclay: A comparative study by using central composite design, Journal of Environmental Chemical Engineering, vol. 3, pp.2738-2749, 2015.
[26] F. Rasouli, S. Aber, D. Salari, A. R. Khataee, Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design, Applied Clay Science, vol. 87, pp. 228-234, 2014.
[27] A. Hassani, L. Alidokht, A.R. Khataee, S. Karaca, Optimization of comparative removal of two structurally different basic dyes using coal as a low-cost and available adsorbent, Journal of the Taiwan Institue of Chemical Engineers, vol. 45, pp. 1597-1607, 2014.
[28] A. Dutta, N. Singh, Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal, Environ Sci Pollut Res, vol. 22, pp. 3876-3885, 2015.
[29] M. Shirzad-Siboni, A. Khataee, A. Hassani, S. Karaca, Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: Kinetic and equilibrium studies, C. R. Chimie, vol. 18, pp. 204-214, 2015.
[30] F. Dellisanti, V. Minguzzi, G. Valdre, Thermal and structural properties of Carich Montmorillonite mechanically deformed by compaction and shear, Appl. Clay Sci., vol. 31 pp. 282-289, 2006.
[31] María E. Parolo, Gisela R. Pettinari, Telma B. Musso, María P. Sánchez-Izquierdo, Laura G. Fernández, Characterization of organo-modified bentonite sorbents: The effect ofmodification conditions on adsorption performance, Applied Surface Science vol. 320, pp. 356-363, 2014.
[32] Suramya I. Rathnayake, Yunfei Xi, Ray L. Frost, Godwin A. Ayoko, Structural and thermal properties of inorganic–organic montmorillonite: Implications for their potential environmental applications, Journal of Colloid and Interface Science, vol.459 pp17–28, 2015.
[33] I. A. Lawal, B. Moodley, Synthesis, characterisation and application of imida-zolium based ionic liquid modified montmorillonite sorbents for the removal of amaranth dye, RSC Adv. vol.5, pp. 61913-61924, 2015.
[34] H. Shayesteh, A. Rahbar-Kelishami, R. Norouzbeigi, Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies, Journal of Molecular Liquids, vol. 221, pp.1-11, 2016.
[35] S. Liu, Yuqiu Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide, Chemical Engineering Journal, vol.248, pp. 135-144, 2014.
[36] K. Rasool, D. S. Lee, Characteristics, kinetics and thermodynamics of Congo Red biosorption by activated sulfidogenic sludge from an aqueous solution, Int. J. Environ. Sci. Technol. vol.12, pp.571-580, 2015.
[37] M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J, vol.187, pp.79-88, 2012.
[38] S. Dawood, T. Kanti Sen, Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design, Water Research, vol. 46, pp.1933-1946, 2012.
[39] H. Chen, J. Zhao,Adsorption study for removal of Congo red anionic dye using organo-attapulgite, Adsorption, vol. 15, pp. 381-389, 2009.