Intellectual Property Protection of CRISPR Related Technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32920
Intellectual Property Protection of CRISPR Related Technologies

Authors: Zheng Miao, Dennis Fernandez


CRISPR research has the potential to completely transform life science, agriculture, live-stock and the health care industry. The Intellectual Property derived from its research has raised significant attention in the academic as well as the biopharmaceutical industry culminating an urgent need for strategic IP protection. We review the rudimentary concepts and key competitors of CRISPR technologies as well as the paramount strategies for intellectual property protection. Further, we elaborate on prosecution issues related to CRISPR patents as well as possible solutions to various patent laws, interferences and litigation. Finally, we address how the bioinformatics of the CRISPR technology begs an inquiry into issues of privacy and a host of ethical concerns.

Keywords: Bioinformatics, CRISPR, biotechnology, intellectual property.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261


[1] M. Jinek, K. Chylinski, I. Fonfara, et al. “Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Science, vol. 337, Aug. 2012, pp. 816-821.
[2] K. Chylinski, K. S. Makarova, E. Charpentier, and E. V. Koonin, “Classification and evolution of type II CRISPR-Cas systems.” Nucleic Acids Res., vol 42, Jun. 2014, pp. 6091–6105.
[3] I. Fonfara, H. Richter, M. Bratovič, A. Le Rhun, E. Charpentier, “The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.” Nature, vol. 532, Apr. 2016, pp. 517-521.
[4] L. Cong, F. A. Ran, Cox, D., et al. “Multiplex genome engineering using CRISPR/Cas systems.” Science. vol. 339, Feb. 2013, pp. 819-823.
[5] P. Mali, L. Yang, K. M. Esvelt, et al. “RNA-guided human genome engineering via Cas9.” Science, vol. 339, Feb. 2013, pp. 823-826.
[6] M. Jinek, A. East, A. Cheng, et al. “RNA-programmed genome editing in human cells.” Elife, Jan. 2013, e00471. doi: 10.7554/eLife.00471.
[7] X. Han, Z. Liu, M. C. Jo, et al. “CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation.” Sci Adv., vol. 1, Aug. 2015, e1500454. doi: 10.1126/sciadv.1500454.
[8] Leahy-Smith America Invents Act. United States Code Title 35. §§ 101-103. USPTO MPEP Appendix L - Patent Laws CHAPTER 10. “Patentability of inventions”, Sept. 2011.
[9] U.S. PATENT AND TRADEMARK OFFICE. Types of Patents. Accessed on 16/03/2017.
[10] D. Fernandez, C. Chun, “Intellectual property protection in the EDA industry”. International journal of novel research in marketing management and economics, vol. 2, 2015, pp. 55-63.
[11] Richards Patent Law, How much does a patent cost?, 2012. Accessed on 16/03/2017.
[12] S. Halpern, Copyright Law: Protection of original expression (Carolina Academic Press, 2002.
[13] K. Chan, D. S. Fernandez, “Patent Prosecution in Proteomics.” Computer & high technology law journal, vol. 19, 2003, pp. 458-470.
[14] D. Fernandez, A. Maninang, S. Kobayashi, et al. “Intellectual Property Protection for Bioinformatics and Computational Biology.” IWBBIO, 2015, Part I, LNCS 9043, pp. 85–95.
[15] H. C. Anawalt, E. E. Powers, IP Strategy – Complete intellectual property planning, access, and protection, West Group, §1.01, at 1-3, 2001.
[16] Genome editing/genome engineering market by technology (CRISPR, TALEN, ZFN), Applications (Cell Line Engineering, Animal Genetic Engineering, Plant Genetic Engineering), End User (Biotechnology & Pharmaceutical Companies, CROs - Global Forecast to 2021. Published in Oct. 2016.
[17] K. Pardee, A. A. Green, M. K. Takahashi et al. “Rapid, low-cost detection of Zika virus using programmable biomolecular components.” Cell, vol. 165, May 2016, pp. 1255-1266. doi: 10.1016/j.cell.2016.04.059.
[18] M. K. Kiessling, S. Schuierer, S. Stertz, et al. “Identification of oncogenic driver mutations by genome-wide CRISPR-Cas9 dropout screening.” BMC Genomics, vol. 17, Sept. 2016, pp. 723. doi: 10.1186/s12864-016-3042-2.
[19] S. Ellis, Toolgen wins critical CRISPR patent in Korea. Accessed on 16/03/2017.
[20] J. J. Yeh, D. Fernandez, N. Hansen, “Patent prosecution strategies for stem cell-related applications.” APBN, vol. 9, 2005, pp. 1212-1219.
[21] R. Kumar, J. J. Yeh, D. Fernandez, N. Hansen, Patent prosecution strategies for stem cell–related applications. Journal of Biomolecular Screening, vol. 12, 2007, pp. 769-774. doi: 10.1177/1087057107305828.
[22] Accessed on 16/03/2017.
[23] Ethicon, INC. vs U.S. Surgical Corporation, Fed. Cir., 1998 (135 F.3d 145645 U.S.P.Q.2d 1545, 48 Fed. R. Evid. Serv. 1226).
[24] J. Wu, A. Platero-Luengo, M. Sakurai, et al. “Interspecies chimerism with mammalian pluripotent stem cells.” Cell, vol. 168, 2017, pp. 473. doi: 10.1016/j.cell.2016.12.036
[25] J. Mun, D. U. Kim, K. L. Hoe, S. Y. Kim, “Genome-wide functional analysis using the barcode sequence alignment and statistical analysis (Barcas) tool.” BMC Bioinformatics. Vol. 17(Suppl 17), Dec. 2016 , pp. 475.
[26] O. Parnas, M. Jovanovic, T. M. Eisenhaure, et al. “A Genome-wide CRISPR screen in primary immune cells to dissect regulatory networks.” Cell, vol. 162, July 2015, pp. 675-686. doi: 10.1016/j.cell.2015.06.059.
[27] Alice Corporation v. CLS Bank International, 573 U.S. ____ (2014) (June 2014).