Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility

Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin


Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.

Keywords: Functionalization, polypropylene, chiral monomer, hemocompatibility.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151


[1] M. H. Kunita, A. W. Rinaldi, E. M. Girotto, E. Radovanovic, E. C. Muniz, A. F. Rubira, “Grafting of glycidyl methacrylate onto polypropylene using supercritical carbon dioxide,” Eur. Polym. J., vol. 41, pp. 2176–2182, September 2005.
[2] D. M. Jia, Y. F. Luo, Y. M. Li, H. Lu, W. W. Fu, W. L. Cheung, “Synthesis and characterization of solid-phase graft copolymer of polypropylene with styrene and maleic anhydride,” J. Appl. Polym. Sci., vol. 78, pp. 2482–2487, December 2000.
[3] R. Rengarajan, M. Vicic, S. Lee, “Solid phase graft copolymerization: 2. Effect of toluene,” Polymer, vol. 30, pp. 933–935, May 1989.
[4] S. Lee, R. Rengarajan, V. R. Parameswaran, “Solid phase graft copolymerization: Effect of interfacial agent,” J. Appl. Polym. Sci., vol. 41, pp. 1891–1894, December 1990.
[5] J. Wang, D. F. Wang, W. Du, E. G. Zou, Q. Dong, “Supercritical carbon dioxide-assisted solid-phase free radical grafting of butyl acrylate onto PP,” e-Polymers, No. 097, pp. 1–15, August 2009.
[6] D. Li, B. X. Han, Z. M. Liu, “Grafting of 2-Hydroxyethyl Methacrylate onto Isotactic Poly(propylene) Using Supercritical CO2 as a Solvent and Swelling Agent,” Macromol. Chem. Phys., vol. 202, pp. 2187–2194, July 2001.
[7] Q. Z. Dong, Y. Liu, “Styrene-Assisted Free-Radical Graft Copolymerization of Maleic Anhydride onto Polypropylene in Supercritical Carbon Dioxide,” J. Appl. Polym. Sci., vol. 90, pp. 853–860, October 2003.
[8] C. S. Liu, Q. Wang, “Solid-Phase Grafting of Hydroxymethyl Acrylamide onto Polypropylene through Pan Milling,” J. Appl. Polym. Sci., vol. 78, pp. 2191–2197, December 2000.
[9] W. L. Qiu, T. Endo, T. Hirotsu, “A novel technique for preparing of maleic anhydride grafted polyolefins,” Eur. Polym. J., vol. 41, pp. 1979–1984, September 2005.
[10] W. L. Qiu, T. Hirotsu, “A New Method to Prepare Maleic Anhydride Grafted Poly(propylene),” Macromol. Chem. Phys., vol. 206, pp. 2470–2482, December 2005.
[11] L. F. Zhang, B. H. Guo, Z. M. Zhang, “Synthesis of Multifunctional Polypropylene via Solid Phase Cografting and Its Grafting Mechanism,” J. Appl. Polym. Sci., vol. 84, pp. 929–935, May 2002.
[12] R. Rengarajan, V. R. Parameswaran, S. Lee, M. Vicic, P. L. Rinaldi, “N.rn.r. analysis of polypropylene-maleic anhydride copolymer,” Polymer, vol. 31, pp. 1703–1706, September1990.
[13] C. Ding, H. He, B. C. Guo, D. M. Jia, “Structure and Properties of Polypropylene/Clay Nanocomposites Compatibilized by Solid-Phase Grafted Polypropylene,” Polym. Compos., vol. 29, pp. 698–707, June 2008.
[14] F. Picchioni, J. G. P. Goossens, M. van Duin, “Solid-State Modification of Isotactic Polypropylene (iPP) via Grafting of Styrene. II. Morphology and Melt Processing,” J. Appl. Polym. Sci., vol. 97, pp. 575–583, July 2005.
[15] Q. T. Deng, Z. S. Fu, F. L. Sun, J. T. Xu, Z. Q. Fan, “Influence of an Annealing Treatment on the Solid-State Grafting of Styrene onto Spherical Isotactic Polypropylene Granules,” J. Appl. Polym. Sci., vol. 110, pp. 1990–1996, November 2008.
[16] F. L. Sun, Z. S. Fu, Q. T. Deng, Z. Q. Fan, “Solid-State Graft Polymerization of Styrene in Spherical Polypropylene Granules in the Presence of TEMPO,” J. Appl. Polym. Sci., vol. 112, pp. 275–282, April 2009.
[17] Y. K. Pan, J. M. Ruan, D. F. Zhou, “Solid-Phase Grafting of Glycidyl Methacrylate onto Polypropylene,” J. Appl. Polym. Sci., vol. 65, pp. 1905–1912, September 1997.
[18] A. C. Patel, R. B. Brahmbhatt, P. V. C. Rao, S.Devi, “Solid phase grafting of various monomers on hydroperoxidized polypropylene,” Eur. Polym. J., vol. 36, pp. 2477–2484, November 2000.
[19] H. L. Peng, Y. F. Luo, H. Q. Hong, L. Liu, D. M. Jia, “Study on Crystallization Behavior of Solid-Phase Graft Copolymers of Polypropylene with Maleic Anhydride and Methyl Methacrylate,” Polym. Plast. Technol. Eng., vol. 47, pp. 996–1001, October 2008.
[20] H. Q. Hong, D. M. Jia, H. He, “Influences of Grafted Side Chains on the Viscoelastic Behavior of Ternary Graft Copolymers,” Polym. Plast. Technol.Eng., vol. 45, pp. 1263–1269, November 2006.
[21] H. Q. Hong, H. He, D. M. Jia, C. Ding, F. Xue, Y. P. Huang, “Influences of Ternary Graft Copolymers on the Morphology and Properties of Polypropylene/Calcium Carbonate Composites,” Polym. Plast. Technol. Eng., vol. 45, pp. 379–387, March 2006.
[22] J. Wang, D. F. Wang, W. Du, E. G. Zou, Q. Dong, “Synthesis of Functional Polypropylene Via Solid-Phase Grafting Soft Vinyl Monomer and Its Mechanism,” J. Appl. Polym. Sci., vol. 113, pp. 1803–1810, August 2009.
[23] R. B. Brahmbhatt, A. C. Patel, R. C. Jain, S. Devi, “Solid phase grafting of 4-vinylpyridine onto isotactic polypropylene,” Eur. Polym. J., vol. 35, pp. 1695–1701, September 1999.
[24] G. L. Zhang, L. L. Chen, L. L. Qiu, X. D. Xu, J. Feng, “Preparation and Characterization of Poly(Acrylonitrile-co-1-Acryloylpyrrolidine-2- Carboxylic Acid) with High Molecular Weight,”J. Macromol. Sci., Part B: Phys., vol. 52, pp. 1298–1308, September 2013.
[25] D. Shi, J. H. Yang, Z. H. Yao, Y. Wang, H. L. Huang, J. Wu, J. H. Yin, G. Costa, “Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting,” Polymer, vol. 42, pp. 5549–5557, June 2001.
[26] J. Jin, W. Jiang, Q. shi, J. Zhao, J. H. Yin, P. Stagnaro, “Fabrication of PP-g-PEGMA-g-heparin and its hemocompatibility: From protein adsorption to anticoagulant tendency,” Appl. Surf. Sci., vol. 258, pp. 5841–5849, May 2012.
[27] Q. Shi, J. Zhao, P. Stagnaro, H. Yang, S. F. Luan, J. H. Yin, “Biocompatible Polypropylene Prepared by a Combination of Melt Grafting and Surface Restructuring,” J. Appl. Polym. Sci., vol. 126, pp. 929–938, November 2012.
[28] H. Cheng, L. Yuan, W. Song, Z. Wu, D. Li. “Biocompatible polymer materials: Role of protein-surface interactions,” Prog. Polym. Sci., vol. 33, pp. 1059–1087, November 2008.