Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32009
Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences

Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan


Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.

Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985


[1] S. M. Sakan, D. S. Djordjevic, D. D. Manojlovic, P. S. Polic, “Assessment of heavy metal pollutants accumulation in the Tisza River sediments”, J Environ Manage. 2009, vol. 11, pp. 3382-3390.
[2] H. Wang, J. Wang, R. Liu, W. Yu, Z. Shen, “Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary”. Mar Pollut Bull 2015, 93, pp. 250-258.
[3] C. K. Jain, “Metal fractionation study on bed sediments of River Yamuna, India”. Water research, 2004. 38 (3), pp.569-578.
[4] X. Jiao, Y. Teng, Y. Zhan, J. Wu, X. Lin, “Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China”. 2015, PLoS One 10, e0127736.
[5] U. Förstner. G. T. W. Wittman, “Metal pollution in the aquatic environment,” 1983, Berlin: Springer-Verlag.
[6] L. Medici, J. Bellanova, C. Belviso, F. Cavalcante, A. Lettino, P. Paquale, “Trace metals speciation in sediments of the Basento River (Italy)”. 2011. Appl Clay Sci 53, pp. 414-442.
[7] S. Unlu, S. Topcuoglu, B. Alpar, C. Kirbasoglu, Y. Z. Yilmaz, “Heavy metal pollution in surface sediment and mussel samples in the Gulf of Gemlik. Environ. Monit. Assess. 2008, 144, pp. 169–178.
[8] A. Sreekanth, S. K. Mrudulrag, E. Cheriyan, C. H. Sujatha, “Trace metal enrichment and organic matter sources in the surface sediments of Arabian Sea along southwest India (Kerala coast)”. 2015, Article in press. Marine Pollution Bulletin.
[9] S. Veerasingam, P. Vethamony, R. M. Murali, B. Fernandes, “Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India”. Mar. Pollut. Bull., vol. 91(1), 2015, pp. 362-367.
[10] CONAGUA, “Estadísticas del Agua en México, edición 2010. 10 años de presentar al agua en cifras. México D.F.: Secretaría de Medio Ambiente y Recursos Naturales”. Accessed March 23, 2016
[11] National Meteorological Service, 2010 Accessed 24/08/2016 content&view=article&id=12&Itemid=77
[12] J. M. Morales-Ramírez, J. Tritla, A. Camprubí, R. Corona-Esquivel, “Fluid origin of the Ixtacamaxtitlán hydrothermal deposits, Puebla State, Mexico”. J Geochem Exp, 2003. 78-79, pp. 653-657.
[13] H. E. Malde, “Preliminary draft on the stratigraphy of Valsequillo region (except valsequillo gravel, volcanic ash stratigraphy, etc.)”. Submitted to the U.S. Geological survey records library, Denver, Colorado, 1968, pp 1–157.
[14] INEGI, “Censo de Población y Vivienda”. 2010 Accessed March 23, 2016
[15] R. L. Folk, R.L., “Petrology of Sedimentary Rocks”. Hemphills Publ Co, Austin, Texas, 1980. pp. 170.
[16] J. C. Griffiths, “Size versus sorting in Caribbean sediments”. 1951, Jour. Geol. 59, pp. 211–243.
[17] R. E. Carver, “Procedures in Sedimentary Petrology”. 1971, John Wiley and Sons. Canada, Limited, New York, pp. 653.
[18] S. Venkatramanan, S. Y. Chung, T. Ramkumar, N. Park, “Grain Size Trend and Hydrodynamic Condition of Tirumalairajan River Estuary, East Coast of India”. Oceanology 54(4), 2014, pp. 532-540.
[19] P. S. Kumar, J. K. P. Edward, “Grain Size Trend and Hydrodynamic Condition of Tirumalairajan River Estuary, East Coast of India. Indian Journal of Marine Sciences, 2009. 38(2), pp. 235-248.
[20] T. Ayyamperumal, M. P. Jonathan, S. Srinivasalu, J. S. Armstrong, V. Ram Mohan, “Assessment of acid leachable trace metals in sediment cores from River Uppanar Cuddalore, Southeast coast of India. Environmental Pollution, 2006. 143, pp. 34-45.
[21] S. P. Volvoikar, G. N. Nayak, “Factors controlling the distribution of metals in intertidal mudflat sediments of Vaitarna estuary, North Maharashtra coast, India”. Arabian Journal of Geosciences, 2013. Doi: 10.1007/s12517-013-1162-4.
[22] M. C. Fernandes, G. N. Nayak, “Speciation of metals and their distribution in tropical estuarine mudflat sediments, southwest coast of India”. Ecotoxicology and Environmental Safety. 2015, 122, pp. 68-75.
[23] G. W. Luther, A. L. Meyerson, J. Krajewski, R. I. Hires, “Metal sulfides in estuarine sediments”. J. Sed. Petrol. 1980. 50, pp.1117-1120.
[24] J. H. Taylor, N. B. Price, “The geochemistry of iron and manganese in waters and sediments of Bolstadfjord, S.W. Norway”. Estuar. Coast. Shelf Sci. 1983. 17, pp. 1-19.
[25] D. Janaki-Raman, M. P. Jonathan, S. Srinivasalu, J. Amstrong-Altrin, S. P. Mohan, V. Ram-Mohan, “Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environmental Pollution. 2007, 145, pp.245-257.
[26] P. Schaaf, J. Stimac, C. Siebe, J. L. Macías, “Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico”. J Petrol. 2005, 46, pp. 1243-1282.
[27] A. C. L. Larocque, J. A. Stimac, C. Siebe, K. Greengrass, R. Chapman, S. R. Mejia, “Deposition of a high-sulfidation Au assemblage from a magmatic volatile phase, volcán Popocatépetl, Mexico”. J Vol Geother Res. 2008, 170, pp. 51-60.
[28] A. Davis, C. Sellstone, S. Clough, R. Barrick, B. Yare, “Bioaccumulation of arsenic, chromium and lead in fish: constraints imposed by sediment geochemistry”. Applied Geochemistry. 1996. 11, pp. 409-423.
[29] S. K. Sarkar, B. Bhattacharya, “19th World Congress of Soil Science, Soil Solutions for a Changing World”. 1 – 6 August 2010, Brisbane, Australia. Published on DVD.
[30] N. S. Ismail, J. Awad, “Organic carbon and carbonate distributions near sewage out falls in the Jordan Gulf of Aqaba, Red Sea”. Arab Gulf Journal of Scientific Research, 1984. 2, pp. 547–554.
[31] P. Szefer, J. Geldon, A. Ahmed Ali, F. Paez Osuna, A. C. Ruiz Fernandes, S. R. Guerro Gaivan, “Distribution and association of trace metals in soft tissue and byssus of Mytella strigata and other benthal organisms from Mazatlan Harbour, Mangrove Lagoon of the northwest coast of Mexico”. Environ. Int., 1998. 24 (3), pp. 359-374.
[32] A. C. Ruiz-Fernández, F. Páez-Osuna, C. Hillaire-Marcel, M. Soto-Jiménez, B. Ghaleb, “Principal component analysis applied to assessment of metal pollution from urban wastes in the Culiacán river estuary”. Bull. Environ. Contam. Toxicol. 2001. 67 (5), pp. 741-748.
[33] B. R. R. Seshan, U. Natesan, K. Deepthi, “Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India”. Int. J. Environ. Sci. Tech., 2010. 7 (2), pp. 291-306, ISSN: 1735-1472.
[34] J. Zhang, C. L. Liu, “Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes”. Estuar. Coast. Shelf. Sci. 2002. 54, pp. 1051-1070.
[35] P. S. Harikumar, T. S. Jisha, “Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India”. Int .J. Eng. Sci. Technol. Sci. Technol. 2010. 2, pp. 840–850.
[36] C. Chiu-Wen, C. Chih-Feng, D. Cheng-Di, “Distribution and Enrichment Evaluation of Cadmium in the Sediments of Canon River Mouth, Taiwan”. Energy Procedia, 2012. 16, pp. 895-900.
[37] L. Järup, A. Åkesson, “Current status of cadmium as an environmental health problem”. Toxicology and Applied Pharmacology 2009, pp. 201-238.
[38] G. Muller, “The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking”. Chem Zeit. 1981. 105, pp. 157–164.
[39] L. Hakanson, “An ecological risk assessment index for aquatic contamination control, a sedimentological approach”. Water Res. 1980. 14, pp. 975-1001.
[40] S. R. Taylor, S. M. McLennan, “The Continental Crust: Its Composition and Evolution”. Blackwell, Oxford, 1985.
[41] D. C. Oliveira, J. M. Lafon, M. O. Lima, “Distribution of trace metals and Pb isotopes in bottom sediments of the Murucupi River, North Brazil”. Int. J. Sed. Res. 2016, In press doi:10.1016/j.ijsrc.2016.05.001.
[42] X. Gang, L. Jian, P.E.I. Shaofeng, K. Xianghuai, H. Gang, G. Maosheng, “Source identification of aluminum in surface sediments of the Yellow Sea off the Shandong Peninsula”. Acta Oceanol. Sin. 2015, Vol. 34, No. 12, pp.147–153.