On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α

Authors: Jay Prakash Singh

Abstract:

The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature.

Keywords: LP-Sasakian manifolds, coefficient α, quasi conformal curvature tensor, concircular vector field, torse forming vector field, η-Einstein manifold.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339512

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717

References:


[1] C.S. Bagewadi, D.G. Prakasha and Venkatesha, On pseudo projectively flat LP-Sasakian manifold with a coefficient α, Ann. univ. Mariae C.S. Lubin-Polonia LXI, 29(2007), 1-8.
[2] U.C. De, A.A. Shaikh, and A. Sengupta, On LP-Sasakian manifold with a coefficient α,Kyungpook Math.J.42 (2002) 177-186.
[3] U.C. De, J.B. Jun, and A.A Shaikh, conformally flat LP-Sasakian manifold with a coefficient α,Nihonkai Math.J. 13(2002), 121-131.
[4] K. Matsumoto, On Lorentzian para contact manifolds,Bull.of Yamagata Univ. Nat. Sci.12(1989), 151-156.
[5] I. Mihai, and R. Rosoca, On Lorentzian P-Sasakian manifolds, Classical Analysis , world sci.pub.singapore (1992), 155-169.
[6] A.A. Shaikh, S.K. Hui, and C.S. Bagewadi, On quasi conformally flat almost pseudo ricci symmetric manifolds, Tamsui oxford J. of math.sci. 26(2) (2010),203-219.
[7] K. Yano, On the torse forming direction in Riemannian spaces, proc.Imp. Acad.Tokyo 20(1994) 340-345.
[8] K. Yano, and S. Sawaki, Riemannian manifolds admitting a conformal transformation group,J.Diff.Geo. (1968), 161-184.