On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α

Jay Prakash Singh

Abstract

The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold $\mathbf{M}(n>3)$ with a constant coefficient α is an η-Einstein and in a quasi conformally flat LP-Sasakian manifold $\mathrm{M}(n>3)$ with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature.

Keywords-LP-Sasakian manifolds, coefficient α, quasi conformal curvature tensor, concircular vector field, torse forming vector field, η-Einstein manifold.

I. INTRODUCTION

THE notion of LP-Sasakian manifolds has been introduced by Matsumoto [4]. Then in this line, Mihai and Rosca [5] introduced the same notion independently and obtained several results in this manifold. In 2002, De et al. [2] introduced the notion of LP-Sasakian manifolds with a coefficient α which generalizes the notion of LP-Sasakian manifolds. In [3], De et al. studied these manifolds with conformally flat curvature tensor and then Bagewadi et al. [1] investigated it with pseudo projectively flat curvature tensor.
In 1968, Yano and Sawaki [8] defined and studied a tensor field W of type $(1,3)$ which includes both the conformal curvature tensor and concicular curvature tensor as special cases and called Quasi conformal curvature tensor which is given as

$$
\begin{align*}
W(X, Y) Z & =a R(X, Y) Z+b[S(Y, Z) X \\
& -S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)\{g(Y, Z) X \\
& -g(X, Z) Y\} \tag{1}
\end{align*}
$$

where R, S, Q, r denote curvature tensor, Ricci tensor, Ricci operator, scalar curvature tensor respectively and a, b are arbitrary constant not simultaneously zero. Motivated by these studies in this paper, we have studied some properties of quasi conformally flat LP-Sasakian manifolds with a coefficient α. Here, we prove that in a Quasi conformally flat LP-Sasakian manifolds with a coefficient α, the characteristic vector field ξ is a concircular vector field if and only if the manifold is η-Einstein. Finally, we prove that Quasi conformally flat LP-Sasakian manifolds with a coefficient α is a manifold of constant curvature if the scalar curvature r is constant.

II. Preliminaries

Let M be an n -dimensional differentiable manifold endowed with a $(1,1)$ tensor field ϕ, contravariant vector field ξ, a
J. P. Singh is with the Department of Mathematics and Computer Science, Mizoram University, Aizawl, Mizoram, 796004 India (e-mail: jpsmaths@gmail.com).
covariant vector field η, and a Lorentzian metric g of type $(1,2)$ such that for each point $p \in M$, the tensor g_{p} : $T_{p} M \times T_{p} M \longrightarrow R$ is a non degenerate inner product of signature $(-,+,+, \ldots,+)$ where $T_{p} M$ denotes the tangent vector space of M at p and R is real number space, which satisfies

$$
\begin{gather*}
\eta(\xi)=-1, \quad \phi^{2} X=X+\eta(X) \xi \tag{2}\\
g(X, \xi)=\eta(X) \\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{3}
\end{gather*}
$$

for all vector fields X, Y. The structures (ϕ, ξ, η, g) are said to be Lorentzian almost paracontact structure and the manifold M with the structures (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold [4]. In the Lorentzian almost paracontact manifold M , the following relations hold [4]:

$$
\begin{gather*}
\phi \xi=0, \quad \eta(\phi X)=0, \tag{4}\\
\Omega(X, Y)=\Omega(Y, X), \tag{5}
\end{gather*}
$$

where $\Omega(X, Y)=g(X, \phi Y)$.
In the Lorentzian almost paracontact manifold M , if the relations

$$
\begin{align*}
\left(D_{Z} \Omega\right)(X, Y) & =\alpha[\{g(X, Z)+\eta(X) \eta(Z)\} \eta(Y) \\
& +\{g(Y, Z)+\eta(Y) \eta(Z)\} \eta(X)] \tag{6}\\
\Omega(X, Y) & =\frac{1}{\alpha}\left(D_{X} \eta\right)(Y) \tag{7}
\end{align*}
$$

hold where D denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M is called LP-Sasakian manifolds with a coefficient α [2]. An LP-Sasakian manifolds with a coefficient $\alpha=1$ is an LP-Sasakian manifolds [4].

If a vector field V satisfies the equation

$$
D_{X} V=\beta X+T(X) V
$$

where β is a non zero scalar function and T is a covariant vector field, then V is called a torse forming vector field [7]. In a Lorentzian manifold M , if we assume that ξ is a unit torse forming vector field, then we have:

$$
\begin{equation*}
\left(D_{X} \eta\right)(Y)=\alpha[g(X, Y)+\eta(X) \eta(Y)] \tag{8}
\end{equation*}
$$

where α is a non zero scalar function. Hence, the manifold admitting a unit torse forming vector field satisfying (8) is an

LP-Sasakian manifolds with a coefficient α. Especially, if η satisfies

$$
\begin{equation*}
\left(D_{X} \eta\right)(Y)=\epsilon[g(X, Y)+\eta(X) \eta(Y)], \quad \epsilon^{2}=1 \tag{9}
\end{equation*}
$$

then M is called an LSP-Sasakian Manifold [4]. In particular, if α satisfies (8) and the following equation

$$
\begin{equation*}
\alpha(X)=p \eta(X), \quad \alpha(X)+D_{X} \alpha \tag{10}
\end{equation*}
$$

where p is a scalar function, then ξ is called a concircular vector field. Let us consider an LP-Sasakian manifolds M (ϕ, ξ, η, g) with a coefficient α. Then we have the following relations [4]

$$
\begin{align*}
\eta(R(X, Y) Z) & =-\alpha(X) \Omega(Y, Z)+\alpha(Y) \Omega(X, Z) \\
& +\alpha^{2}\{g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y)\} \tag{11}
\end{align*}
$$

$$
\begin{equation*}
S(X, \xi)=-\Psi \alpha(X)+(n-1) \alpha^{2} \eta(X)+\alpha(\phi X) \tag{12}
\end{equation*}
$$

where $\Psi=\operatorname{Trace}(\phi)$.
We now state the following results which will be needed in the later section.
Lemma 1. [2] In an LP-Sasakian manifolds with a coefficient α, one of the following cases occur;
i) $\Psi^{2}=(n-1)^{2}$
ii) $\quad \alpha(Y)=-p \quad \eta(Y)$, where $\quad p=\alpha(\xi)$.

Lemma 2. [2] In a Lorentzian almost paracontact manifold M with its structure (ϕ, ξ, η, g) satisfying $\Omega(X, Y)=$ $\frac{1}{\alpha}\left(D_{X} \eta\right)(Y)$, where α is a non-zero scalar function, the vector field ξ is a torse forming if and only if the relation $\Psi^{2}=(n-1)^{2}$ holds good.

III. Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α

Let us consider a Quasi conformally flat LP-Sasakian manifolds $\mathrm{M}(n>3)$ with a coefficient α. Then, since the quasi conformal curvature tensor W vanishes, (1) reduces to

$$
\begin{align*}
R(X, Y, Z, U) & =-\frac{b}{a}[S(Y, Z) g(X, U)-S(X, Z) g(Y, U) \\
& +S(X, U) g(Y, Z)-g(X, Z) S(Y, U)] \\
& +\frac{r}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\{g(Y, Z) g(X, U) \\
& -g(X, Z) g(Y, U)\} \tag{13}
\end{align*}
$$

Putting $U=\xi$ in (13) and using (11) and (12), we get

$$
\begin{align*}
-\alpha(X) \Omega(Y, Z) & +\alpha(Y) \Omega(X, Z) \\
& +\alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \\
& =-\frac{b}{a}[\{S(Y, Z) \eta(X)-S(X, Z) \eta(Y)\} \\
& +g(Y, Z)\left\{-\Psi \alpha(X)+(n-1) \alpha^{2} \eta(X)\right. \\
& +\alpha(\phi X)\}-g(X, Z)\{-\Psi \alpha(Y) \\
& \left.\left.+(n-1) \alpha^{2} \eta(Y)+\alpha(\phi Y)\right\}\right] \\
& +\frac{r}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\{(g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y))\} . \tag{14}
\end{align*}
$$

Again putting $X=\xi$ in (14) and using (4) and (12), we obtain by straightforward calculations

$$
\begin{align*}
S(Y, Z) & =\left\{\frac{a r}{n(n-1) b}+\frac{2 r}{n}-p \Psi-(n-1) \alpha^{2}\right. \\
& \left.-\frac{a}{b} \alpha^{2}\right\} g(Y, Z)+\left\{\frac{a r}{n(n-1) b}\right. \\
& \left.+\frac{2 r}{n}-2(n-1) \alpha^{2}-\frac{a}{b} \alpha^{2}\right\} \eta(Y) \eta(Z) \\
& +\{\Psi \alpha(Z)-\alpha(\phi Z)\} \eta(Y) \\
& +\{\Psi \alpha(Y)-\alpha(\phi Y)\} \eta(Z) \\
& -\frac{a}{b} p \Omega(Y, Z) \tag{15}
\end{align*}
$$

where $p=\alpha(\xi)$. If an LP-Sasakian manifolds M with a coefficient α satisfies the relation

$$
S(X, Y)=c g(X, Y)+d \eta(X) \eta(Y)
$$

where c, d are associated functions on the manifold, then the manifold M is said to be an η-Einstein manifold. Now we have [2]

$$
\begin{align*}
S(Y, Z) & =\left[\frac{r}{(n-1)}-\alpha^{2}+\frac{p \Psi}{n-1}\right] g(X, Y) \\
& +\left[\frac{r}{(n-1)}-\alpha^{2}+\frac{n p \Psi}{n-1}\right] \eta(X) \eta(Y) \tag{16}
\end{align*}
$$

Contracting (16), we obtain

$$
\begin{equation*}
r=n(n-1) \alpha^{2}+n p \Psi \tag{17}
\end{equation*}
$$

By virtue of (15) and (16), we get

$$
\begin{align*}
& {\left[\frac{\{a+(n-2) b\} r}{n(n-1) b}-\{a+(n-2) b\} \frac{\alpha^{2}}{b}\right.} \\
+ & \left.\frac{(2-n) p \Psi}{n-1}\right] g(Y, Z)+\left[\frac{\{a+(n-2) b\} r}{n(n-1) b}\right. \\
- & \left.\{a+(n-2) b\} \frac{\alpha^{2}}{b}+\frac{n p \Psi}{n-1}\right] \eta(Y) \eta(Z) \\
+ & \{\Psi \alpha(Z)-\alpha(\phi Z)\} \eta(Y) \\
+ & \{\Psi \alpha(Y)-\alpha(\phi Y)\} \eta(Z) \\
- & p \frac{a}{b} \Omega(Y, Z)=0 . \tag{18}
\end{align*}
$$

Putting $Z=\xi$ in (18), we obtain

$$
\begin{equation*}
\Psi \alpha(Y)-\alpha(\phi Z)=-\Psi p \eta(Y) \tag{19}
\end{equation*}
$$

for all vector fields Y. In consequence of (17) and (19), (18) becomes

$$
\begin{align*}
\frac{a}{b}\left[\frac{\Psi}{n-1}\{g(Y, Z)\right. & +\eta(Y) \eta(Z)\} \\
& -\Omega(Y, Z)]=0 \tag{20}
\end{align*}
$$

If $\mathrm{p}=0$, then from (19) we have $\alpha(\phi Y)=\Psi \alpha(Y)$. Thus, since Ψ is an eigenvalue of the matrix ϕ, Ψ is equal to ± 1. Hence by Lemma 1, we get $\alpha(Y)=0$ for all Y and hence α is constant which contradict to our assumption. Consequently, we have $p \neq 0$ and hence from (20) we get

$$
\begin{align*}
\frac{a}{b}\left[\frac{\Psi}{n-1}\{g(Y, Z)\right. & +\eta(Y) \eta(Z)\} \\
& -\Omega(Y, Z)]=0 \tag{21}
\end{align*}
$$

Replacing Y by ϕY in (21) and using (4), we get

$$
\begin{align*}
\frac{a}{b}[\Omega(Y, Z) & -\frac{\Psi}{n-1}\{g(Y, Z) \\
& +\eta(Y) \eta(Z)\}]=0 \tag{22}
\end{align*}
$$

Combining (21) and (22), we get

$$
\left\{\Psi^{2}-(n-1)^{2}\right\}[g(Y, Z)+\eta(Y) \eta(Z)]=0
$$

which gives by virtue $n>3$

$$
\begin{equation*}
\Psi^{2}=(n-1)^{2} . \tag{23}
\end{equation*}
$$

Hence, Lemma 2 proves that ξ is torse forming. Again, we have

$$
\left(D_{X} \eta\right)(Y)=\beta\{g(X, Y)+\eta(X) \eta(Y)\} .
$$

Now from (7) we get

$$
\begin{aligned}
\Omega(X, Y) & =\frac{\beta}{\alpha}\{g(X, Y)+\eta(X) \eta(Y)\} \\
& =g\left(\frac{\beta}{\alpha}(X+\eta(X) \xi, Y)\right),
\end{aligned}
$$

and $\Omega(X, Y)=g(X, \phi Y)$.
Since g is non singular, we have

$$
\phi(X)=\frac{\beta}{\alpha}(X+\eta(X) \xi)
$$

and

$$
\phi^{2}(X)=\left(\frac{\beta}{\alpha}\right)^{2}(X+\eta(X) \xi)
$$

It follows from (2) that $\left(\frac{\beta}{\alpha}\right)^{2}=1$ and hence $\alpha= \pm \beta$. Thus, we have

$$
\phi(X)= \pm(X+\eta(X) \xi)
$$

By virtue of (19) we see that $\alpha(Y)=-p \eta(Y)$. Thus, we conclude that ξ is a concircular vector field. Conversely suppose that ξ is a concircular vector field. Then we have:

$$
\left(D_{X} \eta\right)(Y)=\beta\{g(X, Y)+\eta(X) \eta(Y)\}
$$

where β is a certain function and $\left(D_{X} \beta\right)(Y)=q \eta(X)$ for a certain scalar function q. Hence by virtue of (7), we have $\alpha= \pm \beta$. Thus

$$
\begin{aligned}
& \Omega(X, Y)=\epsilon\{g(X, Y)+\eta(X) \eta(Y)\}, \epsilon^{2}=1 \\
& \Psi=\epsilon(n-1), D_{X} \alpha=\alpha(X)+p \eta(X), p=\epsilon q
\end{aligned}
$$

Using these relations and (19) in (15), it can be easily seen that M is η-Einstein manifold. This leads to the following theorem:
Theorem 1. In a Quasi conformally flat LP-Sasakian manifold $M(n>3)$ with a non constant coefficient α, the characteristic vector field η is a concircular vector field if and only if M is η-Einstein manifold.
Next we consider the case when α is constant. In this case, the following relations hold:

$$
\begin{gather*}
\eta(R(X, Y) Z)=\alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\}, \tag{24}\\
S(X, \xi)=(n-1) \eta(X) \tag{25}
\end{gather*}
$$

Putting $U=\xi$ in (13) and then using (31) and (25), we get

$$
\begin{aligned}
& \alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \\
= & -\frac{b}{a}[S(Y, Z) \eta(X)-S(Y, Z) \eta(Y) \\
+ & (n-1) \alpha^{2} g(Y, Z) \eta(X) \\
- & \left.(n-1) \alpha^{2} g(X, Z) \eta(Y)\right] \\
+ & \frac{r}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\{g(Y, Z) \eta(X) \\
- & g(X, Z) \eta(Y)\} .
\end{aligned}
$$

Again putting $U=\xi$ in above and making use of (25) we get

$$
\begin{align*}
S(Y, Z) & =\left[\frac{\{a+2 b(n-1)\} r}{b n(n-1)}\right. \\
& \left.-\frac{\alpha^{2}}{b}\{a+b(n-1)\}\right] g(Y, Z) \\
& +\left[\frac{\{a+2 b(n-1)\} r}{b n(n-1)}\right. \\
& \left.-\frac{\alpha^{2}}{b}\{a+2 b(n-1)\}\right] \eta(Y) \eta(Z) \tag{26}
\end{align*}
$$

Thus, we can state the following theorem:
Theorem 2. A Quasi conformally flat LP-Sasakian manifold $\mathrm{M}(n>3)$ with a constant coefficient α is an η-Einstein.

Differentiating covariantly (26) along X and making use of (7), we obtain

$$
\begin{align*}
\left(D_{X} S\right)(Y, Z)= & \frac{d r(X)}{b(n-1) n}\{a+2 b(n-1)\} \times \\
& \{g(Y, Z)+\eta(Y) \eta(Z)\} \\
+ & \frac{\alpha\{a+2 b(n-1)\}}{b}\left(\frac{r}{n(n-1)}-\alpha^{2}\right) \times \\
& \{\Omega(X, Y) \eta(Z)+\Omega(X, Z) \eta(Y)\} . \tag{27}
\end{align*}
$$

where $d r(X)=D_{X} r$. This implies that

$$
\begin{align*}
\left(D_{X} S\right)(Y, Z)- & \left(D_{Y} S\right)(X, Z) \\
= & \frac{d r(X)}{n}\left(2+\frac{a}{b(n-1)}\right)\{g(Y, Z) \\
+ & \eta(Y) \eta(Z)\}-\frac{d r(Y)}{n}(2 \\
+ & \left.\frac{a}{b(n-1)}\right)\{g(X, Z)+\eta(X) \eta(Z)\} \\
+ & \frac{\alpha}{b}\{a+2 b(n-1)\}\left(\frac{r}{n(n-1)}-\alpha^{2}\right) \times \\
& \{\Omega(X, Z) \eta(Y)+\Omega(Y, Z) \eta(X)\} . \tag{28}
\end{align*}
$$

On the other hand, we also have for a Quasi conformally flat curvature tensor [6]

$$
\begin{align*}
& \left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z) \\
= & \frac{\{2 a-(n-1)(n-4) b\}}{2(a+b) n(n-1)}[d r(X) g(Y, Z) \\
- & d r(Y) g(X, Z)] \tag{29}
\end{align*}
$$

provided $a+2 b(n-1) \neq 0$. From (28) and (29), it follows that

$$
\begin{aligned}
& \frac{d r(X)}{n}\left(2+\frac{a}{b(n-1)}\right)\{g(Y, Z)+\eta(Y) \eta(Z)\} \\
- & \frac{d r(Y)}{n}\left(2+\frac{a}{b(n-1)}\right)\{g(X, Z)+\eta(X) \eta(Z)\} \\
+ & \frac{\alpha}{b}\{a+2(n-1) b\}\left(\frac{r}{n(n-1)}-\alpha^{2}\right) \times \\
= & \frac{\{\Omega(X, Z) \eta(Y)+\Omega(Y, Z) \eta(X)\}}{2(a+b) n(n-1)}[d r(X) g(Y, Z) \\
- & d r(Y) g(X, Z)]
\end{aligned}
$$

Jay Prakash Singh completed his B.Sc. M.Sc. (Mathematics)and Ph.D. from Banaras Hindu University, Varanasi, U.P., India. After completing his Ph.D., he join Mizoram University, Aizawl-796004, Mizoram, India as Assistant Professor in 2007.

If r is constant then (30) yields

$$
r=n(n-1) \alpha^{2} .
$$

Hence from (13), it follows that
$R(X, Y, Z, U)=\alpha^{2}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]$,
which shows that the manifold is of constant curvature. Thus, we can state the following:
Theorem 3. In a Quasi conformally flat LP-Sasakian manifold M $(n>3)$ with a constant coefficient α, if the scalar curvature tensor is constant then M is of constant curvature.

IV. Conclusion

The present paper is about the study of some geometrical properties of quasi conformally flat LP-Sasakian manifolds with a coefficient α. It is established that a quasi conformally flat LP-Sasakian manifold $\mathbf{M}(n>3)$ with a constant coefficient α is an η - Einstein and in a quasi conformally flat LP-Sasakian manifold $\mathrm{M}(n>3)$ with a non coefficient α, the characteristic vector field η is a concircular vector field if and only if M is η-Einstein manifold.

Acknowledgment

The authors would like to thank to the referee for his/her valuable suggestions for the improvement of the paper.

References

[1] C.S. Bagewadi, D.G. Prakasha and Venkatesha, On pseudo projectively flat LP-Sasakian manifold with a coefficient α, Ann. univ. Mariae C.S. Lubin-Polonia LXI, 29(2007), 1-8.
[2] U.C. De, A.A. Shaikh, and A. Sengupta, On LP-Sasakian manifold with a coefficient α,Kyungpook Math.J. 42 (2002) 177-186.
[3] U.C. De, J.B. Jun, and A.A Shaikh, conformally flat LP-Sasakian manifold with a coefficient α,Nihonkai Math.J. 13(2002), 121-131.
[4] K. Matsumoto, On Lorentzian para contact manifolds,Bull.of Yamagata Univ. Nat. Sci.12(1989), 151-156.
[5] I. Mihai, and R. Rosoca, On Lorentzian P-Sasakian manifolds, Classical Analysis, world sci.pub.singapore (1992), 155-169.
[6] A.A. Shaikh, S.K. Hui, and C.S. Bagewadi, On quasi conformally flat almost pseudo ricci symmetric manifolds, Tamsui oxford J. of math.sci. 26(2) (2010),203-219.
[7] K. Yano, On the torse forming direction in Riemannian spaces, proc.Imp. Acad.Tokyo 20(1994) 340-345.
[8] K. Yano, and S. Sawaki, Riemannian manifolds admitting a conformal transformation group,J.Diff.Geo. (1968), 161-184.

