Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30124
Analysis of P, d and 3He Elastically Scattered by 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk

Abstract:

Elastic scattering of Protons and deuterons from 11B nuclei at different p, d energies have been analyzed within the framework of optical model code (ECIS88). The elastic scattering of 3He+11B nuclear system at different 3He energies have been analyzed using double folding model code (FRESCO). The real potential obtained from the folding model was supplemented by a phenomenological imaginary potential, and during the fitting process the real potential was normalized and the imaginary potential optimized. Volumetric integrals of the real and imaginary potential depths (JR, JW) have been calculated for 3He+11B system. The agreement between the experimental data and the theoretical calculations in the whole angular range is fairly good. Normalization factor Nr is calculated in the range between 0.70 and 1.236.

Keywords: Elastic scattering, optical model parameters, double folding model, nuclear density distribution.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339239

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870

References:


[1] G. R. Satchler, Direct Nuclear Reactions, Clarendon Press, Oxford, (1983) 392.
[2] A. Amar, International Journal of Modern Physics E, 23(2014) 1450041.
[3] A. Amar, N. Burtebayev, Sh. Hamada, Kerimkulov Zhambul and N. Amangieldy, World Academy of Science, Engineering and Technology, 4 (2010).
[4] G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A284(1977) 399.
[5] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys.A398(1983) 269.
[6] G.R. Satchler and W.G. Love, Phys.Rep.55(1979)183.
[7] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys.A398(1983) 269.
[8] Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56 (1997) 954.
[9] D. T. Khoa et al., J. Phys. G: Nucl. Part. Phys. 34 (2007) R111.
[10] J. Cook, R.J. Griffiths, Nucl. Phys. A 366 (1981) 27.
[11] T. Stovall, J. Goldemberg and D. B. Isabelle, Nucl. Phys.86(1966)225.
[12] A. Amar, S. Hamada, N. Burtebayev and N. Amangedly, International Journal of Modern Physics E, 20 (2011) p. 980–986.
[13] A. Gallmann, F. Hibou, P. Fintz, P. E. Hodgson, and E. K. Warburton, Phys. Rev. 138(1965) p 560.
[14] W. Fitz, R. Jahr and R. Santo, Nucl. Phys. A 101(1967) P. 449–459.
[15] R. J. Slobodrian, Nucl. Phys. 32 (1962) P. 684–694.
[16] J.Y. Park, J.L. Duggan, P.D. Miller, M.M. Dunkan and R.L. Dangle, Nucl. Phys. A 134(1969) P. (277–288).
[17] M.A.M. Shahabuddin, C.J. Webb and V.R.W. Edwards, Nucl. Phys. A 284(1977) P. (83–96).
[18] I. J. Thompson, Comput. Phys. Rep. 167 (1988) 7.
[19] R. Gorgen, F. Hinterberger, R. Jahn, P. Vonrossen and B. Schuller, Nucl. Phys. A320 (1979) p.296-308.