Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30063
Fermentation of Xylose and Glucose Mixture in Intensified Reactors by Scheffersomyces stipitis to Produce Ethanol

Authors: S. C. Santos, S. R. Dionísio, A. L. D. De Andrade, L. R. Roque, A. C. Da Costa, J. L. Ienczak


In this work, two fermentations at different temperatures (25 and 30ºC), with cell recycling, were accomplished to produce ethanol, using a mix of commercial substrates, xylose (70%) and glucose (30%), as organic source for Scheffersomyces stipitis. Five consecutive fermentations of 80 g L-1 (1º, 2º and 3º recycles), 96 g L-1 (4º recycle) and 120 g L-1 (5º recycle)reduced sugars led to a final maximum ethanol concentration of 17.2 and 34.5 g L-1, at 25 and 30ºC, respectively. Glucose was the preferred substrate; moreover xylose startup degradation was initiated after a remaining glucose presence in the medium. Results showed that yeast acid treatment, performed before each cycle, provided improvements on cell viability, accompanied by ethanol productivity of 2.16 g L-1 h- 1 at 30ºC. A maximum 36% of xylose was retained in the fermentation medium and after five-cycle fermentation an ethanol yield of 0.43 g ethanol/g sugars was observed. S. stipitis fermentation capacity and tolerance showed better results at 30ºC with 83.4% of theoretical yield referenced on initial biomass.

Keywords: 5-carbon sugar, cell recycling fermenter, mixed sugars, xylose-fermenting yeast.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF


[1] A. Gupta and J.P. Verma. (2015) “Sustainable bio-ethanol production from agro-residues: A review”. Renew Sustain Energy Reviews, 41: 550- 67, 2015.
[2] B. Gutiérrez-Rivera, B. Ortiz-Muñiz, J. Gómez-Rodríguez, et al. (2015) “Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture”. Renew Energy, 74: 399-405.
[3] R. den Hann, E. van Rensburg, S.H. Rose, et al. (2015) “Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing” Current Opinion Biotechnol, 33:32-8.
[4] M. Liang, M.H. Kim, Q.P. HE, et al. (2013) “Impact of pseudocontinuous fermentation on the ethanol tolerance of Scheffersomyces stipitis. J Bioscien Bioengin, 116:319-326.
[5] J. Shi, M. Zhang, L. Zhang, P. Wang, et al. (2014) “Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production”. Microbial Biotechnol, 7:90-9.
[6] T. C. Yang, J. Kumaran, S. Amartey, et al. (2014) “Chapter 5 - Biofuels and Bioproducts Produced through Microbial Conversion of Biomass”. Bioenergy Research: Advances and Applications, 71-93.
[7] P.J. Slininger, S.R.Thompson, S. Weber, et al. (2011) “Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag". Biotechnol Bioengin, 8:1801-15.
[8] F.K. Agbogbo, F.D. Haagensen, D. Milam and K.S. Wenger (2008) “Fermentation of acid-pretreatment corn stover to ethanol without detoxification using Pichia stipitis”. Appl Biochem Biotechnol, 145:53- 8.
[9] M. Bertilsson, J. Andersson and G. Liden (2008) “Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters”. Bioprocess Biosyst Eng., 31:369-377.
[10] P.K. Bajwa, T. Shireen, F. D’Aoust, et al. (2009) “Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor”. Biotechnol Bioengin, 104:892-900.
[11] A.M.R.B Xavier, C.J.R. Frazão, S.R. Pereira,et al. (2014) “Bioethanol Production: Adaptation of Scheffersomyces stipitis to Hardwood Spent Sulfite Liquor”. New Biotechnol, 31:S101
[12] I.C. Roberto, L.S. Lack, M.F.S. Barbosa and I.M. de Mancilha (1991). “Utilization of Sugar Cane Bagasse Hemicellulosic Hydrolysate by Pichia stipitis for the Production of Ethanol” Process Biochem, 26:15- 21.
[13] L. Canilha, W. Carvalho, M.G.A. Felipe, et al. (2010) “Ethanol Production from Sugarcane Bagasse Hydrolysate Using Pichia stipitis. Appl Biochem Biotechnol, 161:84-92.
[14] A.D. Ferreira, S.I. Mussatto, R.M. Cadete, et al. (2011) “Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest”. Yeast, 28:547-554.
[15] R. Gupta, G. Mehta and G. Kuhad (2012). Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass Bioenergy, 47: 334-341.
[16] D. Scordia, S.L. Cosentino, J.W. Lee and T.W. Jeffries (2012) “Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054”. Biomass Bioenergy, 39: 296-305.
[17] T.H., Lin, C.F. Huang, G.L. Guo, et al. (2012) “Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresour Technol, 116:314-319.
[18] A. Singh, S. Bajar and N.R. Bishnoi (2014) “Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their coculture”. Fuel, 116:699-702.
[19] B. Erdei, B. Frankó, M. Galbe, G. Zacchi (2013) “Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400”. J Biotechnol 164:50-58.
[20] K.K. Cheng, B.Y. Cai, J.A. Zhang, et al. (2008) “Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process”. Biochemical Engineerin J, 38:105-9.
[21] P.K. Bajwa, D. Pinel, V.J.J. Martin, et al. (2010) “Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling”. J Microbiologic Methods, 81:179-186.
[22] M. Galbe and G. Zazzhi (2012) “Pretreatment: the key to efficient utilization of lignocellulosic materials”. Biomass and Bioenergy, 46:70- 78.
[23] P.K. Bajwa, C. Phaenark, N. Grant, et al. (2011) “Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis”. Bioresour Technol, 102:9965-9.
[24] L.C. Basso, T.O. Basso and S.N. Rocha (2011) “Biofuel Production – Recent Developments and Prospects” Chapter - Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation, p. 85-100.
[25] R.R. de Andrade, F.M. Filho, R.M. Filho, A.C. da Costa (2013). “Kinetics of ethanol production from sugarcane bagasse enzymatic hydrolysate concentrated with molasses under cell recycle”. Bioresour Technol, 130:351-9.
[26] R. Landaeta, G. Aroca, F. Azevedo, J.A. Teixeira, S.I. Mussato (2013) “Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Applied Energy, 102:124-130.
[27] Y. Matano, T. Hasunuma, A. Kondo (2013) “Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulasedisplaying yeast strain for high yield ethanol production in consolidated bioprocessing”. Bioresource Technology, 135:403-409.
[28] J.P.A. Silva, S.I, Mussato, I.C. Roberto, et al. (2012) “Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renewable Energy, 37:259-265.
[29] J.M. Gancedo (1992) Carbon catabolite repression in yeast. Eur J Biochem,. 206: 297-313.
[30] M.J. Taherzadeh and K. Karimi (2011) “Chapter 12 - Fermentation Inhibitors in Ethanol Processes and Different Strategies to Reduce Their Effects”. Biofuels, 287-311.
[31] P. Phitsuwan, K. Sakka, K. Ratanakhanokchai (2013) “Improvement of lignocellulosic biomass in planta: A review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability” Biomass and Bioenergy, 58:390- 405.