Search results for: adjacent pixel intensity difference quantization (APIDQ)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2012

Search results for: adjacent pixel intensity difference quantization (APIDQ)

2 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.

Keywords: Heterophony, modalism, serialism, synchrony, syntax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
1 Holistic Approach to Teaching Mathematics in Secondary School as a Means of Improving Students’ Comprehension of Study Material

Authors: Natalia Podkhodova, Olga Sheremeteva, Mariia Soldaeva

Abstract:

Creating favourable conditions for students’ comprehension of mathematical content is one of the primary problems in teaching mathematics in secondary school. The fact of comprehension includes the ability to build a working situational model and thus becomes an important means of solving mathematical problems. This paper describes a holistic approach to teaching mathematics designed to address the primary challenges of such teaching; specifically, the challenge of students’ comprehension. Essentially, this approach consists of (1) establishing links between the attributes of the notion: the sense, the meaning, and the term; (2) taking into account the components of student’s subjective experience—value-based emotions, contextual, procedural and communicative—during the educational process; (3) linking together different ways to present mathematical information; (4) identifying and leveraging the relationships between real, perceptual and conceptual (scientific) mathematical spaces by applying real-life situational modelling. The article describes approaches to the practical use of these foundational concepts. Identifying how proposed methods and techniques influence understanding of material used in teaching mathematics was the primary goal. The study included an experiment in which 256 secondary school students took part: 142 in the study group and 114 in the control group. All students in these groups had similar levels of achievement in math and studied math under the same curriculum. In the course of the experiment, comprehension of two topics — “Derivative” and “Trigonometric functions”—was evaluated. Control group participants were taught using traditional methods. Students in the study group were taught using the holistic method: under teacher’s guidance, they carried out assignments designed to establish linkages between notion’s characteristics, to convert information from one mode of presentation to another, as well as assignments that required the ability to operate with all modes of presentation. Identification, accounting for and transformation of subjective experience were associated with methods of stimulating the emotional value component of the studied mathematical content (discussions of lesson titles, assignments aimed to create study dominants, performing theme-related physical exercise ...) The use of techniques that forms inter-subject notions based on linkages between, perceptual real and mathematical conceptual spaces proved to be of special interest to the students. Results of the experiment were analysed by presenting students in each of the groups with a final test in each of the studied topics. The test included assignments that required building real situational models. Statistical analysis was used to aggregate test results. Pierson criterion x2 was used to reveal statistics significance of results (pass-fail the modelling test). Significant difference of results was revealed (p < 0.001), which allowed to conclude that students in the study group showed better comprehension of mathematical information than those in the control group. The total number of completed assignments of each student was analysed as well, with average results calculated for each group. Statistical significance of result differences against the quantitative criterion (number of completed assignments) was determined using Student’s t-test, which showed that students in the study group completed significantly more assignments than those in the control group (p = 0.0001). Authors thus come to the conclusion that suggested increase in the level of comprehension of study material took place as a result of applying implemented methods and techniques.

Keywords: Comprehension of mathematical content, holistic approach to teaching mathematics in secondary school, subjective experience, technology of the formation of inter-subject notions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505