Search results for: Vanja I. Akova
2 Potential of Safflower (Carthamus tinctorius L.) for Phytoremedation of Soils Contaminated with Heavy Metals
Authors: Violina R. Angelova, Vanja I. Akova, Stefan V. Krustev, Krasimir I. Ivanov
Abstract:
A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with randomized complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vermicompost amendments added at 20 and 40 t/daa) were carried out. The quality of safflower seeds and oil (heavy metals and fatty acid composition) were determined. Tested organic amendments significantly influenced the chemical composition of safflower seeds and oil. The compost and vermicompost treatments significantly reduced heavy metals concentration in safflower seeds and oils, but the effect differed among them. Addition of vermicompost and compost leads to an increase in the content of palmitic acid and linoleic acid, and a decrease in the stearic and oleic acids compared with the control. A significant increase in the quantity of saturated acids was observed in the variants with 20 t/daa of compost and 20 t/daa of vermicompost (9.1 and 8.9% relative to the control). Safflower is a plant which is tolerant to heavy metals and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation.Keywords: Heavy metals, organic amendments, phytoremediation, safflower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27921 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.
Keywords: Data mining, knowledge discovery in databases, prediction models, student success.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539