Search results for: Terence Soule
2 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Tami Alghamdi, Terence Soule
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.
Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3511 Semi-Automatic Analyzer to Detect Authorial Intentions in Scientific Documents
Authors: Kanso Hassan, Elhore Ali, Soule-dupuy Chantal, Tazi Said
Abstract:
Information Retrieval has the objective of studying models and the realization of systems allowing a user to find the relevant documents adapted to his need of information. The information search is a problem which remains difficult because the difficulty in the representing and to treat the natural languages such as polysemia. Intentional Structures promise to be a new paradigm to extend the existing documents structures and to enhance the different phases of documents process such as creation, editing, search and retrieval. The intention recognition of the author-s of texts can reduce the largeness of this problem. In this article, we present intentions recognition system is based on a semi-automatic method of extraction the intentional information starting from a corpus of text. This system is also able to update the ontology of intentions for the enrichment of the knowledge base containing all possible intentions of a domain. This approach uses the construction of a semi-formal ontology which considered as the conceptualization of the intentional information contained in a text. An experiments on scientific publications in the field of computer science was considered to validate this approach.Keywords: Information research, text analyzes, intentionalstructure, segmentation, ontology, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637