Search results for: T. P. K. Grewal
2 Oxidation of Carbon Monoxide in a Monolithic Reactor
Authors: S. Chauhan, T.P.K. Grewal, S.K. Aggarwal, V.K. Srivastava
Abstract:
Solution for the complete removal of carbon monoxide from the exhaust gases still poses a challenge to the researchers and this problem is still under development. Modeling for reduction of carbon monoxide is carried out using heterogeneous reaction using low cost non-noble metal based catalysts for the purpose of controlling emissions released to the atmosphere. A simple one-dimensional model was developed for the monolith using hopcalite catalyst. The converter is assumed to be an adiabatic monolith operating under warm-up conditions. The effect of inlet gas temperatures and catalyst loading on carbon monoxide reduction during cold start period in the converter is analysed.Keywords: carbon monoxide, catalytic, modeling, monolith
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691 Study of Carbon Monoxide Oxidation in a Monolithic Converter
Authors: S. Chauhan, T. P. K. Grewal, S. K. Agrawal, V. K. Srivastava
Abstract:
Combustion of fuels in industrial and transport sector has lead to an alarming release of polluting gases to the atmosphere. Carbon monoxide is one such pollutant, which is formed as a result of incomplete oxidation of the fuel. In order to analyze the effect of catalyst on the reduction of CO emissions to the atmosphere, two catalysts Mn2O3 and Hopcalite are considered. A model was formed based on mass and energy balance equations. Results show that Hopcalite catalyst as compared to Mn2O3 catalyst helped in faster conversion of the polluting gas as the operating temperature of the hopcalite catalyst is much lower as compared to the operating temperature of Mn2O3 catalyst.
Keywords: Carbon monoxide, modeling, hopcalite, manganese oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701