Search results for: S. Gharaibeh
3 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites
Authors: S. I. Abu Alasal, M. M. Esbeih, E. R. Fayyad, R. S. Gharaibeh, M. Z. Ali, A. A. Freewan, M. M. Jamhawi
Abstract:
This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.
Keywords: Meshes, Point Clouds, Surface Reconstruction Protocols, 3D Reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20042 Low-Cost Pre-Treatment of Pharmaceutical Wastewater
Authors: A. Abu-Safa, S. Abu-Salah, M. Mosa, S. Gharaibeh
Abstract:
Pharmaceutical industries and effluents of sewage treatment plants are the main sources of residual pharmaceuticals in water resources. These emergent pollutants may adversely impact the biophysical environment. Pharmaceutical industries often generate wastewater that changes in characteristics and quantity depending on the used manufacturing processes. Carbamazepine (CBZ), {5Hdibenzo [b,f]azepine-5-carboxamide, (C15H12N2O)}, is a significant non-biodegradable pharmaceutical contaminant in the Jordanian pharmaceutical wastewater, which is not removed by the activated sludge processes in treatment plants. Activated carbon may potentially remove that pollutant from effluents, but the high cost involved suggests that more attention should be given to the potential use of low-cost materials in order to reduce cost and environmental contamination. Powders of Jordanian non-metallic raw materials namely, Azraq Bentonite (AB), Kaolinite (K), and Zeolite (Zeo) were activated (acid and thermal treatment) and evaluated by removing CBZ. The results of batch and column techniques experiments showed around 46% and 67% removal of CBZ respectively.
Keywords: Azraq bentonite, carbamazepine, pharmaceutical wastewater, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27051 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network
Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman
Abstract:
Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142