Search results for: Pratik Pattanayak
4 Smart Cane Assisted Mobility for the Visually Impaired
Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick
Abstract:
An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60743 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid
Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee
Abstract:
The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.
Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11122 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5841 Evaluation of Video Quality Metrics and Performance Comparison on Contents Taken from Most Commonly Used Devices
Authors: Pratik Dhabal Deo, Manoj P.
Abstract:
With the increasing number of social media users, the amount of video content available has also significantly increased. Currently, the number of smartphone users is at its peak, and many are increasingly using their smartphones as their main photography and recording devices. There have been a lot of developments in the field of video quality assessment in since the past years and more research on various other aspects of video and image are being done. Datasets that contain a huge number of videos from different high-end devices make it difficult to analyze the performance of the metrics on the content from most used devices even if they contain contents taken in poor lighting conditions using lower-end devices. These devices face a lot of distortions due to various factors since the spectrum of contents recorded on these devices is huge. In this paper, we have presented an analysis of the objective Video Quality Analysis (VQA) metrics on contents taken only from most used devices and their performance on them, focusing on full-reference metrics. To carry out this research, we created a custom dataset containing a total of 90 videos that have been taken from three most commonly used devices, and Android smartphone, an iOS smartphone and a Digital Single-Lens Reflex (DSLR) camera. On the videos taken on each of these devices, the six most common types of distortions that users face have been applied in addition to already existing H.264 compression based on four reference videos. These six applied distortions have three levels of degradation each. A total of the five most popular VQA metrics have been evaluated on this dataset and the highest values and the lowest values of each of the metrics on the distortions have been recorded. Finally, it is found that blur is the artifact on which most of the metrics did not perform well. Thus, in order to understand the results better the amount of blur in the data set has been calculated and an additional evaluation of the metrics was done using High Efficiency Video Coding (HEVC) codec, which is the next version of H.264 compression, on the camera that proved to be the sharpest among the devices. The results have shown that as the resolution increases, the performance of the metrics tends to become more accurate and the best performing metric among them is VQM with very few inconsistencies and inaccurate results when the compression applied is H.264, but when the compression is applied is HEVC, Structural Similarity (SSIM) metric and Video Multimethod Assessment Fusion (VMAF) have performed significantly better.
Keywords: Distortion, metrics, recording, frame rate, video quality assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367