Search results for: O. Feyzioglu
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: O. Feyzioglu

2 Analyzing CPFR Supporting Factors with Fuzzy Cognitive Map Approach

Authors: G. Büyüközkan , O. Feyzioglu, Z. Vardaloglu

Abstract:

Collaborative planning, forecasting and replenishment (CPFR) coordinates the various supply chain management activities including production and purchase planning, demand forecasting and inventory replenishment between supply chain trading partners. This study proposes a systematic way of analyzing CPFR supporting factors using fuzzy cognitive map (FCM) approach. FCMs have proven particularly useful for solving problems in which a number of decision variables and uncontrollable variables are causally interrelated. Hence the FCMs of CPFR are created to show the relationships between the factors that influence on effective implementation of CPFR in the supply chain.

Keywords: Collaborative planning, forecasting and replenishment, fuzzy cognitive map, information sharing, decision synchronization, incentive alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic

Authors: Orhan Feyzioğlu, Gülçin Büyüközkan

Abstract:

As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.

Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832