Search results for: Mochammad Chasani
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Mochammad Chasani

2 Novel Anti-leukemia Calanone Compounds by Quantitative Structure-Activity Relationship AM1 Semiempirical Method

Authors: Ponco Iswanto, Mochammad Chasani, Muhammad Hanafi, Iqmal Tahir, Eva Vaulina YD, Harjono, Lestari Solikhati, Winkanda S. Putra, Yayuk Yuliantini

Abstract:

Quantitative Structure-Activity Relationship (QSAR) approach for discovering novel more active Calanone derivative as anti-leukemia compound has been conducted. There are 6 experimental activities of Calanone compounds against leukemia cell L1210 that are used as material of the research. Calculation of theoretical predictors (independent variables) was performed by AM1 semiempirical method. The QSAR equation is determined by Principle Component Regression (PCR) analysis, with Log IC50 as dependent variable and the independent variables are atomic net charges, dipole moment (μ), and coefficient partition of noctanol/ water (Log P). Three novel Calanone derivatives that obtained by this research have higher activity against leukemia cell L1210 than pure Calanone.

Keywords: AM1 semiempirical calculation, Calanone, Principle Component Regression, QSAR approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
1 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods

Authors: Mochammad Dewo, Sumarsono Sudarto

Abstract:

The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.

Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223