Search results for: Herath MPC Jayaweera
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Herath MPC Jayaweera

2 Drone On-time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath MPC Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GMEs velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks including their tendency to generate longer routes when the obstacles are sideways of the drones route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilize on most types of drones that have basic distance measurement sensors and autopilot supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: Drones, force field methods, obstacle avoidance, path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9
1 Endothelial-Cell-Mediated Displacement of Extracellular Matrix during Angiogenesis

Authors: Yue Du, Sahan C. B. Herath, Qing-Guo Wang, Harry Asada, Peter C. Y. Chen

Abstract:

Mechanical interaction between endothelial cells (ECs) and the extracellular matrix (or collagen gel) is known to influence the sprouting response of endothelial cells during angiogenesis. This influence is believed to impact on the capability of endothelial cells to sense soluble chemical cues. Quantitative analysis of endothelial-cell-mediated displacement of the collagen gel provides a means to explore this mechanical interaction. Existing analysis in this context is generally limited to 2D settings. In this paper, we investigate the mechanical interaction between endothelial cells and the extracellular matrix in terms of the endothelial-cellmediated displacement of the collagen gel in both 2D and 3D. Digital image correlation and Digital volume correlation are applied on confocal reflectance image stacks to analyze cell-mediated displacement of the gel. The skeleton of the sprout is extracted from phase contrast images and superimposed on the displacement field to further investigate the link between the development of the sprout and the displacement of the gel.

Keywords: Angiogenesis, digital image correlation, digital volume correlation, interaction between ECs and ECM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705