Search results for: Eirini Stergiou
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Eirini Stergiou

4 The Nexus between Wind Energy, Biodiversity Protection and Social Acceptance: Evidence of Good Practices from Greece, Latvia and Poland

Authors: Christos Bouras, Eirini Stergiou, Charitini Karakostaki, Vasileios Tzanos, Vasileios Kokkinos

Abstract:

Wind power represents a major pathway to curtailing greenhouse gas emissions and thus reducing the rate of climate change. A wind turbine runs practically emission-free for 20 years, representing one of the most environmentally sustainable sources of energy. Nevertheless, environmental and biodiversity concerns can often slow down or halt the deployment of wind farms due to local public opposition. This opposition is often fuelled by poor relationships between wind energy stakeholders and civil society, which in many cases led to conflictual protests and property damage. In this context, addressing these concerns is essential in order to facilitate the proliferation of wind farms in Europe and the phase-out of fossil fuels from the energy mix. The aim of this study is to identify a number of good practices and cases to avoid increasing biodiversity protection at all stages of wind farms’ lifecycle in three participating countries, namely Greece, Latvia, and Poland. The results indicate that although available technological solutions are already being exploited worldwide, in these countries, there is still room for improvement. To address this gap, a set of policy recommendations is proposed to accomplish the wind energy targets in the near future while simultaneously mitigating the pertinent biodiversity risks.

Keywords: Biodiversity protection, environmental impact, social acceptance, wind energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227
3 Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis

Authors: Marios Poulos, Eirini Maliagani, Minas Paschopoulos, George Bokos

Abstract:

The purpose of my research proposal is to demonstrate that there is a relationship between EEG and endometrial cancer. The above relationship is based on an Aristotelian Syllogism; since it is known that the 14-3-3 protein is related to the electrical activity of the brain via control of the flow of Na+ and K+ ions and since it is also known that many types of cancer are associated with 14-3-3 protein, it is possible that there is a relationship between EEG and cancer. This research will be carried out by well-defined diagnostic indicators, obtained via the EEG, using signal processing procedures and pattern recognition tools such as neural networks in order to recognize the endometrial cancer type. The current research shall compare the findings from EEG and hysteroscopy performed on women of a wide age range. Moreover, this practice could be expanded to other types of cancer. The implementation of this methodology will be completed with the creation of an ontology. This ontology shall define the concepts existing in this research-s domain and the relationships between them. It will represent the types of relationships between hysteroscopy and EEG findings.

Keywords: Bioinformatics, Protein 14-3-3, EEG, Endometrial cancer, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
2 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
1 The Greek Version of the Southampton Nostalgia Scale: Psychometric Properties in Young Adults and Associations with Life Satisfaction, Positive and Negative Emotions, Time Perspective and Wellbeing

Authors: Eirini Petratou, Pezirkianidis Christos, Anastassios Stalikas

Abstract:

Nostalgia is characterized as a mental state of human’s emotional longing for the past that activates both positive and negative emotions. The bittersweet emotions that are activated by nostalgia aid psychological functions to humans and are depended on the type of stimuli that evoke nostalgia but also on the nostalgia activation context. In general, despite that nostalgia can be activated and experienced by all people; however, it differs both in terms of nostalgia experience but also nostalgia frequency. As a matter of fact, nostalgia experience along with nostalgia frequency differs according to the level of the nostalgia proneness. People with high nostalgia proneness tend to experience nostalgia more intensely and frequently than people with low nostalgia proneness. Nostalgia proneness is considered as a basic individual difference that affects the experience of nostalgia, and it can be measured by the Southampton Nostalgia Scale (SNS); a psychometric instrument that measures human’s nostalgia proneness consisting of seven questions that assess a person’s attitude towards nostalgia, the degree of experience or tendency to nostalgic feelings and the nostalgia frequency. In the current study, we translated, validated and calibrated the SNS in Greek population (N = 267). For the calibration process, we used several scales relevant to positive dimensions, such as life satisfaction, positive and negative emotions, time perspective and wellbeing. A confirmatory factor analysis revealed the factors that provide a good Southampton Nostalgia Proneness model fit for young adult Greek population.

Keywords: Nostalgia proneness, nostalgia, psychometric instruments, positive emotions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355