Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Search results for: Multi-robot

7 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot

Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux

Abstract:

One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.

Keywords: Simulation, MRS, Drones, ROS, ArduPilot, Gazebo

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225
6 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbors are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: Swarm Intelligence, Multi-Agent Systems, formation control, potential field method, obstacle avoidance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
5 Minimizing of Target Localization Error using Multi-robot System and Particle Filters

Authors: Jana Puchyova

Abstract:

In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.

Keywords: particle filter, target localization, Multi-robot system, position estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
4 A Cohesive Lagrangian Swarm and Its Application to Multiple Unicycle-like Vehicles

Authors: Jito Vanualailai, Bibhya Sharma

Abstract:

Swarm principles are increasingly being used to design controllers for the coordination of multi-robot systems or, in general, multi-agent systems. This paper proposes a two-dimensional Lagrangian swarm model that enables the planar agents, modeled as point masses, to swarm whilst effectively avoiding each other and obstacles in the environment. A novel method, based on an extended Lyapunov approach, is used to construct the model. Importantly, the Lyapunov method ensures a form of practical stability that guarantees an emergent behavior, namely, a cohesive and wellspaced swarm with a constant arrangement of individuals about the swarm centroid. Computer simulations illustrate this basic feature of collective behavior. As an application, we show how multiple planar mobile unicycle-like robots swarm to eventually form patterns in which their velocities and orientations stabilize.

Keywords: lyapunov stability, unicycle, practical stability, Attractive-repulsive swarm model, individual-based swarm model, Lagrangian swarm model, Lyapunov-like function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161
3 Estimating Localization Network Node Positions with a Multi-Robot System

Authors: Mikko Elomaa, Aarne Halme

Abstract:

A novel method using bearing-only SLAM to estimate node positions of a localization network is proposed. A group of simple robots are used to estimate the position of each node. Each node has a unique ID, which it can communicate to a robot close by. Initially the node IDs and positions are unknown. A case example using RFID technology in the localization network is introduced.

Keywords: RFID, slam, Multi-robot, Localization network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
2 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem

Abstract:

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Keywords: ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1 Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together.

Keywords: Information Fusion, Uncertainty, DST, Map building, DSmT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593