Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: IPv4

6 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: malicious node, CGA, NDP, SEND, modifier, IPsec, self-computing, distributed-computing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
5 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment

Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.

Abstract:

Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.

Keywords: Malware, worm, Dual-Stack, IPv6;IDS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
4 Next Generation IP Address Transition Mechanism for Web Application System

Authors: Mohd. Khairil Sailan, Rosilah Hassan, Zuhaizal Zulkifli

Abstract:

Internet Protocol version 4 (IPv4) address is decreasing and a rapid transition method to the next generation IP address (IPv6) should be established. This study aims to evaluate and select the best performance of the IPv6 address network transitionmechanisms, such as IPv4/IPv6 dual stack, transport Relay Translation (TRT) and Reverse Proxy with additional features. It is also aim to prove that faster access can be done while ensuring optimal usage of available resources used during the test and actual implementation. This study used two test methods such asInternet Control Message Protocol (ICMP)ping and ApacheBenchmark (AB) methodsto evaluate the performance.Performance metrics for this study include aspects ofaverageaccessin one second,time takenfor singleaccess,thedata transfer speed and the costof additional requirements.Reverse Proxy with Caching featureis the most efficientmechanism because of it simpler configurationandthe best performerfrom the test conducted.

Keywords: IPv6, IPv4, network transition, apache benchmark andreverse proxy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
3 NGN and WiMAX: Putting the Pieces Together

Authors: Mohamed K. Watfa, Khaled Abdel Naby, Chetan Govind Bhatia

Abstract:

With the exponential rise in the number of multimedia applications available, the best-effort service provided by the Internet today is insufficient. Researchers have been working on new architectures like the Next Generation Network (NGN) which, by definition, will ensure Quality of Service (QoS) in an all-IP based network [1]. For this approach to become a reality, reservation of bandwidth is required per application per user. WiMAX (Worldwide Interoperability for Microwave Access) is a wireless communication technology which has predefined levels of QoS which can be provided to the user [4]. IPv6 has been created as the successor for IPv4 and resolves issues like the availability of IP addresses and QoS. This paper provides a design to use the power of WiMAX as an NSP (Network Service Provider) for NGN using IPv6. The use of the Traffic Class (TC) field and the Flow Label (FL) field of IPv6 has been explained for making QoS requests and grants [6], [7]. Using these fields, the processing time is reduced and routing is simplified. Also, we define the functioning of the ASN gateway and the NGN gateway (NGNG) which are edge node interfaces in the NGNWiMAX design. These gateways ensure QoS management through built in functions and by certain physical resources and networking capabilities.

Keywords: QoS, NGN, WiMAX, IPv6, Flow Label, ASNGateway

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
2 Network Based Intrusion Detection and Prevention Systems in IP-Level Security Protocols

Authors: R. Kabila

Abstract:

IPsec has now become a standard information security technology throughout the Internet society. It provides a well-defined architecture that takes into account confidentiality, authentication, integrity, secure key exchange and protection mechanism against replay attack also. For the connectionless security services on packet basis, IETF IPsec Working Group has standardized two extension headers (AH&ESP), key exchange and authentication protocols. It is also working on lightweight key exchange protocol and MIB's for security management. IPsec technology has been implemented on various platforms in IPv4 and IPv6, gradually replacing old application-specific security mechanisms. IPv4 and IPv6 are not directly compatible, so programs and systems designed to one standard can not communicate with those designed to the other. We propose the design and implementation of controlled Internet security system, which is IPsec-based Internet information security system in IPv4/IPv6 network and also we show the data of performance measurement. With the features like improved scalability and routing, security, ease-of-configuration, and higher performance of IPv6, the controlled Internet security system provides consistent security policy and integrated security management on IPsec-based Internet security system.

Keywords: vpn, IDS, IPv6, IPv4, IPS, IP-Sec

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4026
1 Improving Location Management in Mobile IPv4 Networks

Authors: Haidar Safa, Hassan Artail, Ahmad Mehio, Hicham Zahr, Ziad Matragi

Abstract:

The Mobile IP Standard has been developed to support mobility over the Internet. This standard contains several drawbacks as in the cases where packets are routed via sub-optimal paths and significant amount of signaling messages is generated due to the home registration procedure which keeps the network aware of the current location of the mobile nodes. Recently, a dynamic hierarchical mobility management strategy for mobile IP networks (DHMIP) has been proposed to reduce home registrations costs. However, this strategy induces a packet delivery delay and increases the risk of packet loss. In this paper, we propose an enhanced version of the dynamic hierarchical strategy that reduces the packet delivery delay and minimizes the risk of packet loss. Preliminary results obtained from simulations are promising. They show that the enhanced version outperforms the original dynamic hierarchical mobility management strategy version.

Keywords: Location Management, Mobile IP (MIP), Home Agent, Foreign Agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129