Search results for: Robot Motion Planning.
3 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4612 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics
Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones
Abstract:
Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.
Keywords: Auto Rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191 Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River
Authors: Sujana Dhar, Asis Mazumdar
Abstract:
The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to continue. Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. The climate change issue is part of the larger challenge of sustainable development. As a result, climate policies can be more effective when consistently embedded within broader strategies designed to make national and regional development paths more sustainable. The impact of climate variability and change, climate policy responses, and associated socio-economic development will affect the ability of countries to achieve sustainable development goals. A very well calibrated Soil and Water Assessment Tool (R2 = 0.9968, NSE = 0.91) was exercised over the Khatra sub basin of the Kangsabati River watershed in Bankura district of West Bengal, India, in order to evaluate projected parameters for agricultural activities. Evapotranspiration, Transmission Losses, Potential Evapotranspiration and Lateral Flow to reach are evaluated from the years 2041-2050 in order to generate a picture for sustainable development of the river basin and its inhabitants. India has a significant stake in scientific advancement as well as an international understanding to promote mitigation and adaptation. This requires improved scientific understanding, capacity building, networking and broad consultation processes. This paper is a commitment towards the planning, management and development of the water resources of the Kangsabati River by presenting detailed future scenarios of the Kangsabati river basin, Khatra sub basin, over the mentioned time period. India-s economy and societal infrastructures are finely tuned to the remarkable stability of the Indian monsoon, with the consequence that vulnerability to small changes in monsoon rainfall is very high. In 2002 the monsoon rains failed during July, causing profound loss of agricultural production with a drop of over 3% in India-s GDP. Neither the prolonged break in the monsoon nor the seasonal rainfall deficit was predicted. While the general features of monsoon variability and change are fairly well-documented, the causal mechanisms and the role of regional ecosystems in modulating the changes are still not clear. Current climate models are very poor at modelling the Asian monsoon: this is a challenging and critical region where the ocean, atmosphere, land surface and mountains all interact. The impact of climate change on regional ecosystems is likewise unknown. The potential for the monsoon to become more volatile has major implications for India itself and for economies worldwide. Knowledge of future variability of the monsoon system, particularly in the context of global climate change, is of great concern for regional water and food security. The major findings of this paper were that of all the chosen projected parameters, transmission losses, soil water content, potential evapotranspiration, evapotranspiration and lateral flow to reach, display an increasing trend over the time period of years 2041- 2050.Keywords: Change, future water availability scenario, modeling, SWAT, global warming, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595