Search results for: Gaurav Gupta
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 157

Search results for: Gaurav Gupta

7 Structural Analysis of Aircraft Wing Using Finite Element Analysis

Authors: Manish Kumar, Pradeep Rout Aditya Kumar Jha, Pankaj Gupta

Abstract:

Wings are structural components of an aeroplane that are used to produce lift while the aircraft is in flight. The initial assault angle of the wing is definite. Due to the pressure difference at the top and bottom surfaces of the wing, lift force is produced when the flow passes over it. This paper explains the fundamental concept of the structural behaviour of a wing threatened by flowing loads during the voyage. The study comprises the use of concepts and analysis with the help of finite element analysis. Wing assembly is the first stage of wing model and design, which are determined by fascinating factual features. The basic gathering wing consists of a thin membrane, two poles, and several ribs. It has two spars, the major spar and the secondary spar. Here, NACA 23015 is selected as the standard model for all types of aerofoil structures since it is more akin to the custom aerofoil utilized in large aircraft, specifically the Airbus A320. Two rods mostly endure the twisting moment and trim strength, which is finished with titanium contamination to ensure enough inflexibility. The covering and wing spars are made of aluminium amalgam to lessen the structural heaviness. Following that, a static underlying examination is performed, and the general contortion, equivalent flexible strain, and comparing Von-Mises pressure are obtained to aid in investigations of the mechanical behaviour of the wing. Moreover, the modular examination is being upheld to decide the normal pace of repetition as well as the modular state of the three orders, which are obtained through the pre-stress modular investigation. The findings of the modular investigation assist engineers in reducing their excitement about regular events and turning away the wing from the whirlwind. Based on the findings of the study, planners can prioritise union and examination of the pressure mindfulness range and tremendous twisting region. All in all, the entertainment outcomes demonstrate that the game plan is feasible and further develop the data grade of the lifting surface.

Keywords: FEM, Airbus, NACA, modulus of elasticity, aircraft wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
6 A Retrospective Study of Vaginal Stenosis Following Treatment of Cervical Cancers and the Effectiveness of Rehabilitation Interventions

Authors: Manjusha R. Vagal, Shyam K. Shrivastava, Umesh Mahantshetty, Sudeep Gupta, Supriya Chopra, Reena Engineer, Amita Maheshwari, Atul Buduk

Abstract:

Vaginal stenosis is a common side effect associated with pelvic radiotherapy in cervical cancer patients which contributes negatively to woman’s health and prevents adequate vaginal/cervical examination. Vaginal dilation with a dilator is routine practice and is internationally advocated as a prophylactic measure to preserve vaginal patency. This retrospective study was carried out with the aim to know the usefulness of vaginal dilation following pelvic radiation therapy in cervical cancer patients in India. Data from medical records of 183 cervical cancer patients, which met the study criteria, were collected related to the stage of the disease, treatment received, commencement period of dilation post radiation therapy, sexual status and side effects associated to dilation practice. Data related to vaginal dimensions as per the length of insertion of a small, medium and large dilator were collected on regular follow-ups until 36 months and/or more. Vaginal dimensions as measured with the length of medium dilator insertion were used for analysis of dilation therapy results using paired t-test. Patients who underwent vaginal dilation with dilator maintained vaginal patency, also the mean vaginal length significantly increased, from 8.02 cm ± 2.69 to 9.96 ± 2.89 cm with a p value <0.001. There was no significant difference found on vaginal patency with different intervals of initiation of dilation therapy. At the third year and more following dilation therapy, significant increase in vaginal length observed with a p value of 0.0001 in both sexually active and inactive patients. Compilation of vaginal dosage during brachytherapy was inadequate, and hence, the secondary objective of the study to determine the effect of radiotherapy on the outcome of rehabilitation intervention was not studied in detail. This retrospective study has found that dilation therapy with vaginal dilators post pelvic radiotherapy is effective in preventing vaginal stenosis and improving vaginal patency and cannot be substituted with vaginal intercourse. Sexual quality of life assessment in the Indian population needs much attention.

Keywords: Dilator, sexually active, vaginal dilation, vaginal stenosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
5 Gassing Tendency of Natural Ester Based Transformer Oils: Low Ethane Generation in Stray Gassing Behavior

Authors: Banti Sidhiwala, T. C. S. M. Gupta

Abstract:

Mineral oils of naphthenic and paraffinic type are in use as insulating liquids in the transformer applications to protect solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different types of gases can represent various types of faults that may occur due to faulty components or unfavorable operating conditions. A large amount of database has been generated in the industry for dissolved gas analysis in mineral oil-based transformer oils, and various models have been developed to predict faults and analyze data. Additionally, oil specifications and standards have been updated to include stray gassing limits that cover low-temperature faults. This modification has become an effective preventative maintenance tool that can help greatly in understanding the reasons for breakdowns of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the stray gassing test shows that hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these types of esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a class of natural esters with low levels of stray gassing by American Society for Testing and Materials (ASTM) and International Electric Council (IEC) methods much lower values compared to the natural ester-based products reported in the literature. The experimental results of products are explained.

Keywords: Biodegradability, fire point, dissolved gas analysis, natural ester, stray gassing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196
4 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: Laser induced breakdown spectroscopy, rotating disk electrode optical emission spectroscopy, surface plasmon resonance, ICCD spectrometer, Nd:YAG laser, engine oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
3 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta

Abstract:

During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.

Keywords: Extra vehicular activity, biomechanics, inverse kinematics, human body modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
2 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of external carbon sources. The present study investigated the feasibility of Anammox Hybrid Reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. Experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Keywords: Anammox, filter media, kinetics, nitrogen removal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551