Search results for: Induction Motor Drive
3 VISMA: A Method for System Analysis in Early Lifecycle Phases
Authors: Walter Sebron, Hans Tschürtz, Peter Krebs
Abstract:
The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.
Keywords: Analysis methods, functional safety, hazard identification, system and safety engineering, system boundary definition, system safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11352 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841 Bio-Psycho-Social Consequences and Effects in Fall-Efficacy Scale in Seniors Using Exercise Intervention of Motor Learning According to Yoga Techniques
Authors: Milada Krejci, Martin Hill, Vaclav Hosek, Dobroslava Jandova, Jiri Kajzar, Pavel Blaha
Abstract:
The paper declares effects of exercise intervention of the research project “Basic research of balance changes in seniors”, granted by the Czech Science Foundation. The objective of the presented study is to define predictors, which influence bio-psycho-social consequences and effects of balance ability in senior 65 years old and above. We focused on the Fall-Efficacy Scale changes evaluation in seniors. Comprehensive hypothesis of the project declares, that motion uncertainty (dyskinesia) can negatively affect the well-being of a senior in bio-psycho-social context. In total, random selection and testing of 100 seniors (30 males, 70 females) from Prague and Central Bohemian region was provided. The sample was divided by stratified random selection into experimental and control groups, who underwent input and output testing. For diagnostics the methods of Medical Anamnesis, Functional anthropological examinations, Tinetti Balance Assessment Tool, SF-36 Health Survey, Anamnestic comparative self-assessment scale were used. Intervention method called "Life in Balance" based on yoga techniques was applied in four-week cycle. Results of multivariate regression were verified by repeated measures ANOVA: subject factor, phase of intervention (between-subject factor), body fluid (within-subject factor) and phase of intervention × body fluid interaction). ANOVA was performed with a repetition involving the factors of subjects, experimental/control group, phase of intervention (independent variable), and x phase interaction followed by Bonferroni multiple comparison assays with a test strength of at least 0.8 on the probability level p < 0.05. In the paper results of the first-year investigation of the three years running project are analysed. Results of balance tests confirmed no significant difference between females and males in pre-test. Significant improvements in balance and walking ability were observed in experimental group in females comparing to males (F = 128.4, p < 0.001). In the females control group, there was no significant change in post- test, while in the female experimental group positive changes in posture and spine flexibility in post-tests were found. It seems that females even in senior age react better to incentives of intervention in balance and spine flexibility. On the base of results analyses, we can declare the significant improvement in social balance markers after intervention in the experimental group (F = 10.5, p < 0.001). In average, seniors are used to take four drugs daily. Number of drugs can contribute to allergy symptoms and balance problems. It can be concluded that static balance and walking ability of seniors according Tinetti Balance scale correlate significantly with psychic and social monitored markers.
Keywords: Exercises, balance, seniors 65+, health, mental and social balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858