Search results for: humanoid robot
3 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured Global Navigation Satellite System Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite system (GNSS) denied settings, such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.
Keywords: Autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7222 Ethically Integrating Robots in Elder Care
Authors: Suresh Lokiah, Samarth Suresh, Yashaswini Vismaya, Sudha Jamthe
Abstract:
The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, the residents are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include Companion Robots, Telepresence Robots, Health Monitoring Robots, and Rehab Robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise when robots need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining patients’ autonomy. Furthermore, the replacement of human touch with robotic interaction can lead to the dehumanization of care. This positional paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of robots and emphasize the critical need for human oversight to respect the dignity and rights of elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.
Keywords: Robots for eldercare, ethics, human-robot interaction, assisted living.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539