Search results for: transversal%20connection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 64

Search results for: transversal%20connection

4 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder

Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea

Abstract:

Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.

Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening

Procedia PDF Downloads 94
3 Tensile and Bond Characterization of Basalt-Fabric Reinforced Alkali Activated Matrix

Authors: S. Candamano, A. Iorfida, F. Crea, A. Macario

Abstract:

Recently, basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result to be effective in structural strengthening and cost/environment efficient. In this study, authors investigate their mechanical behavior when an inorganic matrix, belonging to the family of alkali-activated binders, is used. In particular, the matrix has been designed to contain high amounts of industrial by-products and waste, such as Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash. Fresh state properties, such as workability, mechanical properties and shrinkage behavior of the matrix have been measured, while microstructures and reaction products were analyzed by Scanning Electron Microscopy and X-Ray Diffractometry. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. An appropriate experimental campaign based on direct tensile tests on composite specimens and single-lap shear bond test on brickwork substrate has been thus carried out to investigate their mechanical behavior under tension, the stress-transfer mechanism and failure modes. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST) were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, an average compressive strength of 32 MPa and flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline aluminium-modified calcium silicate hydrate (C-A-S-H) gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. Test results indicate that the behavior is mainly governed by cracks development (II) and widening (III) up to failure. The ultimate tensile strength and strain were respectively σᵤ = 456 MPa and ɛᵤ= 2.20%. The tensile modulus of elasticity in stage III was EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of a fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali-Activated Materials can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.

Keywords: Alkali-activated binders, Basalt-FRCM composites, direct shear tests, structural strengthening

Procedia PDF Downloads 102
2 A Review on Biological Control of Mosquito Vectors

Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Hafiza Javaria Ashraf

Abstract:

The share of vector-borne diseases (VBDs) in the global burden of infectious diseases is almost 17%. The advent of new drugs and latest research in medical science helped mankind to compete with these lethal diseases but still diseases transmitted by different mosquito species, including filariasis, malaria, viral encephalitis and dengue are serious threats for people living in disease endemic areas. Injudicious and repeated use of pesticides posed selection pressure on mosquitoes leading to development of resistance. Hence biological control agents are under serious consideration of scientific community to be used in vector control programmes. Fish have a history of predating immature stages of different aquatic insects including mosquitoes. The noteworthy examples in Africa and Asia includes, Aphanius discolour and a fish in the Panchax group. Moreover, common mosquito fish, Gambusia affinis predates mostly on temporary water mosquitoes like anopheline as compared to permanent water breeders like culicines. Mosquitoes belonging to genus Toxorhynchites have a worldwide distribution and are mostly associated with the predation of other mosquito larvae habituating with them in natural and artificial water containers. These species are harmless to humans as their adults do not suck human blood but feeds on floral nectar. However, their activity is mostly temperature dependent as Toxorhynchites brevipalpis consume 359 Aedes aegypti larvae at 30-32 ºC in contrast to 154 larvae at 20-26 ºC. Although many bacterial species were isolated from mosquito cadavers but those belonging to genus Bacillus are found highly pathogenic against them. The successful species of this genus include Bacillus thuringiensis and Bacillus sphaericus. The prime targets of B. thuringiensis are mostly the immatures of genus Aedes, Culex, Anopheles and Psorophora while B. sphaericus is specifically toxic against species of Culex, Psorophora and Culiseta. The entomopathogenic nematodes belonging to family, mermithidae are also pathogenic to different mosquito species. Eighty different species of mosquitoes including Anopheles, Aedes and Culex proved to be highly vulnerable to the attack of two mermithid species, Romanomermis culicivorax and R. iyengari. Cytoplasmic polyhedrosis virus was the first described pathogenic virus, isolated from the cadavers of mosquito specie, Culex tarsalis. Other viruses which are pathogenic to culicine includes, iridoviruses, cytopolyhedrosis viruses, entomopoxviruses and parvoviruses. Protozoa species belonging to division microsporidia are the common pathogenic protozoans in mosquito populations which kill their host by the chronic effects of parasitism. Moreover, due to their wide prevalence in anopheline mosquitoes and transversal and horizontal transmission from infected to healthy host, microsporidia of the genera Nosema and Amblyospora have received much attention in various mosquito control programmes. Fungal based mycopesticides are used in biological control of insect pests with 47 species reported virulent against different stages of mosquitoes. These include both aquatic fungi i.e. species of Coelomomyces, Lagenidium giganteum and Culicinomyces clavosporus, and the terrestrial fungi Metarhizium anisopliae and Beauveria bassiana. Hence, it was concluded that the integrated use of all these biological control agents can be a healthy contribution in mosquito control programmes and become a dire need of the time to avoid repeated use of pesticides.

Keywords: entomopathogenic nematodes, protozoa, Toxorhynchites, vector-borne

Procedia PDF Downloads 237
1 Transforming Mindsets and Driving Action through Environmental Sustainability Education: A Course in Case Studies and Project-Based Learning in Public Education

Authors: Sofia Horjales, Florencia Palma

Abstract:

Our society is currently experiencing a profound transformation, demanding a proactive response from governmental bodies and higher education institutions to empower the next generation as catalysts for change. Environmental sustainability is rooted in the critical need to maintain the equilibrium and integrity of natural ecosystems, ensuring the preservation of precious natural resources and biodiversity for the benefit of both present and future generations. It is an essential cornerstone of sustainable development, complementing social and economic sustainability. In this evolving landscape, active methodologies take a central role, aligning perfectly with the principles of the 2030 Agenda for Sustainable Development and emerging as a pivotal element of teacher education. The emphasis on active learning methods has been driven by the urgent need to nurture sustainability and instill social responsibility in our future leaders. The Universidad Tecnológica of Uruguay (UTEC) is a public, technologically-oriented institution established in 2012. UTEC is dedicated to decentralization, expanding access to higher education throughout Uruguay, and promoting inclusive social development. Operating through Regional Technological Institutes (ITRs) and associated centers spread across the country, UTEC faces the challenge of remote student populations. To address this, UTEC utilizes e-learning for equal opportunities, self-regulated learning, and digital skills development, enhancing communication among students, teachers, and peers through virtual classrooms. The Interdisciplinary Continuing Education Program is part of the Innovation and Entrepreneurship Department of UTEC. The main goal is to strengthen innovation skills through a transversal and multidisciplinary approach. Within this Program, we have developed a Case of Study and Project-Based Learning Virtual Course designed for university students and open to the broader UTEC community. The primary aim of this course is to establish a strong foundation for comprehending and addressing environmental sustainability issues from an interdisciplinary perspective. Upon completing the course, we expect students not only to understand the intricate interactions between social and ecosystem environments but also to utilize their knowledge and innovation skills to develop projects that offer enhancements or solutions to real-world challenges. Our course design centers on innovative learning experiences, rooted in active methodologies. We explore the intersection of these methods with sustainability and social responsibility in the education of university students. A paramount focus lies in gathering student feedback, empowering them to autonomously generate ideas with guidance from instructors, and even defining their own project topics. This approach underscores that when students are genuinely engaged in subjects of their choice, they not only acquire the necessary knowledge and skills but also develop essential attributes like effective communication, critical thinking, and problem-solving abilities. These qualities will benefit them throughout their lifelong learning journey. We are convinced that education serves as the conduit to merge knowledge and cultivate interdisciplinary collaboration, igniting awareness and instigating action for environmental sustainability. While systemic changes are undoubtedly essential for society and the economy, we are making significant progress by shaping perspectives and sparking small, everyday actions within the UTEC community. This approach empowers our students to become engaged global citizens, actively contributing to the creation of a more sustainable future.

Keywords: active learning, environmental education, project-based learning, soft skills development

Procedia PDF Downloads 39