Search results for: gun barrel steels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 212

Search results for: gun barrel steels

2 Explosive Clad Metals for Geothermal Energy Recovery

Authors: Heather Mroz

Abstract:

Geothermal fluids can provide a nearly unlimited source of renewable energy but are often highly corrosive due to dissolved carbon dioxide (CO2), hydrogen sulphide (H2S), Ammonia (NH3) and chloride ions. The corrosive environment drives material selection for many components, including piping, heat exchangers and pressure vessels, to higher alloys of stainless steel, nickel-based alloys and titanium. The use of these alloys is cost-prohibitive and does not offer the pressure rating of carbon steel. One solution, explosion cladding, has been proven to reduce the capital cost of the geothermal equipment while retaining the mechanical and corrosion properties of both the base metal and the cladded surface metal. Explosion cladding is a solid-state welding process that uses precision explosions to bond two dissimilar metals while retaining the mechanical, electrical and corrosion properties. The process is commonly used to clad steel with a thin layer of corrosion-resistant alloy metal, such as stainless steel, brass, nickel, silver, titanium, or zirconium. Additionally, explosion welding can join a wider array of compatible and non-compatible metals with more than 260 metal combinations possible. The explosion weld is achieved in milliseconds; therefore, no bulk heating occurs, and the metals experience no dilution. By adhering to a strict set of manufacturing requirements, both the shear strength and tensile strength of the bond will exceed the strength of the weaker metal, ensuring the reliability of the bond. For over 50 years, explosion cladding has been used in the oil and gas and chemical processing industries and has provided significant economic benefit in reduced maintenance and lower capital costs over solid construction. The focus of this paper will be on the many benefits of the use of explosion clad in process equipment instead of more expensive solid alloy construction. The method of clad-plate production with explosion welding as well as the methods employed to ensure sound bonding of the metals. It will also include the origins of explosion cladding as well as recent technological developments. Traditionally explosion clad plate was formed into vessels, tube sheets and heads but recent advances include explosion welded piping. The final portion of the paper will give examples of the use of explosion-clad metals in geothermal energy recovery. The classes of materials used for geothermal brine will be discussed, including stainless steels, nickel alloys and titanium. These examples will include heat exchangers (tube sheets), high pressure and horizontal separators, standard pressure crystallizers, piping and well casings. It is important to educate engineers and designers on material options as they develop equipment for geothermal resources. Explosion cladding is a niche technology that can be successful in many situations, like geothermal energy recovery, where high temperature, high pressure and corrosive environments are typical. Applications for explosion clad metals include vessel and heat exchanger components as well as piping.

Keywords: clad metal, explosion welding, separator material, well casing material, piping material

Procedia PDF Downloads 134
1 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells

Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski

Abstract:

The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).

Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC

Procedia PDF Downloads 46