Search results for: baccilus anthracis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11

Search results for: baccilus anthracis

11 Molecular Epidemiology of Anthrax in Georgia

Authors: N. G. Vepkhvadze, T. Enukidze

Abstract:

Anthrax is a fatal disease caused by strains of Bacillus anthracis, a spore-forming gram-positive bacillus that causes the disease anthrax in animals and humans. Anthrax is a zoonotic disease that is also well-recognized as a potential agent of bioterrorism. Infection in humans is extremely rare in the developed world and is generally due to contact with infected animals or contaminated animal products. Testing of this zoonotic disease began in 1907 in Georgia and is still being tested routinely to provide accurate information and efficient testing results at the State Laboratory of Agriculture of Georgia. Each clinical sample is analyzed by RT-PCR and bacteriology methods; this study used Real-Time PCR assays for the detection of B. anthracis that rely on plasmid-encoded targets with a chromosomal marker to correctly differentiate pathogenic strains from non-anthracis Bacillus species. During the period of 2015-2022, the State Laboratory of Agriculture (SLA) tested 250 clinical and environmental (soil) samples from several different regions in Georgia. In total, 61 out of the 250 samples were positive during this period. Based on the results, Anthrax cases are mostly present in Eastern Georgia, with a high density of the population of livestock, specifically in the regions of Kakheti and Kvemo Kartli. All laboratory activities are being performed in accordance with International Quality standards, adhering to biosafety and biosecurity rules by qualified and experienced personnel handling pathogenic agents. Laboratory testing plays the largest role in diagnosing animals with anthrax, which helps pertinent institutions to quickly confirm a diagnosis of anthrax and evaluate the epidemiological situation that generates important data for further responses.

Keywords: animal disease, baccilus anthracis, edp, laboratory molecular diagnostics

Procedia PDF Downloads 87
10 Genomic Surveillance of Bacillus Anthracis in South Africa Revealed a Unique Genetic Cluster of B- Clade Strains

Authors: Kgaugelo Lekota, Ayesha Hassim, Henriette Van Heerden

Abstract:

Bacillus anthracis is the causative agent of anthrax that is composed of three genetic groups, namely A, B, and C. Clade-A is distributed world-wide, while sub-clades B has been identified in Kruger National Park (KNP), South Africa. KNP is one of the endemic anthrax regions in South Africa with distinctive genetic diversity. Genomic surveillance of KNP B. anthracis strains was employed on the historical culture collection isolates (n=67) dated from the 1990’s to 2015 using a whole genome sequencing approach. Whole genome single nucleotide polymorphism (SNPs) and pan-genomics analysis were used to define the B. anthracis genetic population structure. This study showed that KNP has heterologous B. anthracis strains grouping in the A-clade with more prominent ABr.005/006 (Ancient A) SNP lineage. The 2012 and 2015 anthrax isolates are dispersed amongst minor sub-clades that prevail in non-stabilized genetic evolution strains. This was augmented with non-parsimony informative SNPs of the B. anthracis strains across minor sub-clades of the Ancient A clade. Pan-genomics of B. anthracis showed a clear distinction between A and B-clade genomes with 11 374 predicted clusters of protein coding genes. Unique accessory genes of B-clade genomes that included biosynthetic cell wall genes and multidrug resistant of Fosfomycin. South Africa consists of diverse B. anthracis strains with unique defined SNPs. The sequenced B. anthracis strains in this study will serve as a means to further trace the dissemination of B. anthracis outbreaks globally and especially in South Africa.

Keywords: bacillus anthracis, whole genome single nucleotide polymorphisms, pangenomics, kruger national park

Procedia PDF Downloads 150
9 Protective Effect of hsa-miR-124 against to Bacillus anthracis Toxins on Human Macrophage Cells

Authors: Ali Oztuna, Meral Sarper, Deniz Torun, Fatma Bayrakdar, Selcuk Kilic, Mehmet Baysallar

Abstract:

Bacillus anthracis is one of the biological agents most likely to be used in case of bioterrorist attack as well as being the cause of anthrax. The bacterium's major virulence factors are the anthrax toxins and an antiphagocytic polyglutamic capsule. TEM8 (ANTXR1) and CMG2 (ANTXR2) are ubiquitously expressed type I transmembrane proteins, and ANTXR2 is the major receptor for anthrax toxins. MicroRNAs are 21-24 bp small noncoding RNAs that regulate gene expression by base pairing with the 3' UTR (untranslated regions) of their target mRNAs resulting in mRNA degradation and/or translational repression. MicroRNAs contribute to regulation of most biological processes and influence numerous pathological states like infectious disease. In this study, post-exposure (toxins) protective effect of the hsa-miR-124-3p against Bacillus anthracis was examined. In this context, i) THP-1 and U937 cells were differentiated to MΦ macrophage, ii) miRNA transfection efficiencies were evaluated by flow cytometry and qPCR, iii) protection against Bacillus anthracis toxins were investigated by XTT, cAMP ELISA and MEK2 cleavage assays. Acknowledgements: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant SBAG-218S467.

Keywords: ANTXR2, hsa-miR-124-3p, MΦ macrophage, THP-1, U937

Procedia PDF Downloads 153
8 Preliminary Results on a Study of Antimicrobial Susceptibility Testing of Bacillus anthracis Strains Isolated during Anthrax Outbreaks in Italy from 2001 to 2017

Authors: Viviana Manzulli, Luigina Serrecchia, Adelia Donatiello, Valeria Rondinone, Sabine Zange, Alina Tscherne, Antonio Parisi, Antonio Fasanella

Abstract:

Anthrax is a zoonotic disease that affects a wide range of animal species (primarily ruminant herbivores), and can be transmitted to humans through consumption or handling of contaminated animal products. The etiological agent B.anthracis is able to survive in unfavorable environmental conditions by forming endospore which remain viable in the soil for many decades. Furthermore, B.anthracis is considered as one of the most feared agents to be potentially misused as a biological weapon and the importance of the disease and its treatment in humans has been underscored before the bioterrorism events in the United States in 2001. Due to the often fatal outcome of human cases, antimicrobial susceptibility testing plays especially in the management of anthrax infections an important role. In Italy, animal anthrax is endemic (predominantly found in the southern regions and on islands) and is characterized by sporadic outbreaks occurring mainly during summer. Between 2012 and 2017 single human cases of cutaneous anthrax occurred. In this study, 90 diverse strains of B.anthracis, isolated in Italy from 2001 to 2017, were screened to their susceptibility to sixteen clinically relevant antimicrobial agents by using the broth microdilution method. B.anthracis strains selected for this study belong to the strain collection stored at the Anthrax Reference Institute of Italy located inside the Istituto Zooprofilattico Sperimentale of Puglia and Basilicata. The strains were isolated at different time points and places from various matrices (human, animal and environmental). All strains are a representative of over fifty distinct MLVA 31 genotypes. The following antibiotics were used for testing: gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline and trimethoprim. A standard concentration of each antibiotic was prepared in a specific diluent, which were then twofold serial diluted. Therefore, each wells contained: bacterial suspension of 1–5x104 CFU/mL in Mueller-Hinton Broth (MHB), the antibiotic to be tested at known concentration and resazurin, an indicator of cell growth. After incubation overnight at 37°C, the wells were screened for color changes caused by the resazurin: a change from purple to pink/colorless indicated cell growth. The lowest concentration of antibiotic that prevented growth represented the minimal inhibitory concentration (MIC). This study suggests that B.anthracis remains susceptible in vitro to many antibiotics, in addition to doxycycline (MICs ≤ 0,03 µg/ml), ciprofloxacin (MICs ≤ 0,03 µg/ml) and penicillin G (MICs ≤ 0,06 µg/ml), recommend by CDC for the treatment of human cases and for prophylactic use after exposure to the spores. In fact, the good activity of gentamicin (MICs ≤ 0,25 µg/ml), streptomycin (MICs ≤ 1 µg/ml), clindamycin (MICs ≤ 0,125 µg/ml), chloramphenicol(MICs ≤ 4 µg/ml), vancomycin (MICs ≤ 2 µg/ml), linezolid (MICs ≤ 2 µg/ml), tetracycline (MICs ≤ 0,125 µg/ml), erythromycin (MICs ≤ 0,25 µg/ml), rifampin (MICs ≤ 0,25 µg/ml), amoxicillin (MICs ≤ 0,06 µg/ml), towards all tested B.anthracis strains demonstrates an appropriate alternative choice for prophylaxis and/or treatment. All tested B.anthracis strains showed intermediate susceptibility to the cephalosporins (MICs ≥ 16 µg/ml) and resistance to trimethoprim (MICs ≥ 128 µg/ml).

Keywords: Bacillus anthracis, antibiotic susceptibility, treatment, minimum inhibitory concentration

Procedia PDF Downloads 210
7 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing

Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti

Abstract:

Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.

Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis

Procedia PDF Downloads 137
6 Capability of a Single Antigen to Induce Both Protective and Disease Enhancing Antibody: An Obstacle in the Creation of Vaccines and Passive Immunotherapies

Authors: Parul Kulshreshtha, Subrata Sinha, Rakesh Bhatnagar

Abstract:

This study was conducted by taking B. anthracis as a model pathogen. On infecting a host, B. anthracis secretes three proteins, namely, protective antigen (PA, 83kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). These three proteins are the components of two anthrax toxins. PA binds to the cell surface receptors, namely, tumor endothelial marker (TEM) 8 and capillary morphogenesis protein (CMG) 2. TEM8 and CMG2 interact with LDL-receptor related protein (LRP) 6 for endocytosis of EF and LF. On entering the cell, EF acts as a calmodulin-dependent adenylate cyclase that causes a prolonged increase of cytosolic cyclic adenosine monophosphate (cAMP). LF is a metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MAPKK/MEK) close to their N-terminus. By secreting these two toxins, B.anthracis ascertains death of the host. Once the systemic levels of the toxins rise, antibiotics alone cannot save the host. Therefore, toxin-specific inhibitors have to be developed. In this wake, monoclonal antibodies have been developed for the neutralization of toxic effects of anthrax toxins. We created hybridomas by using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor of B. anthracis) to obtain anti-toxin antibodies. Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immunized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies from all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H8 and H10) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). The protective efficacy of H7, H8, H10 and H11 was investigated. H7, H8 and H10 were found to be protective. H11 was found to have disease enhancing characteristics in-vitro and in mouse model of challenge with B. anthracis. In this study the disease enhancing character of H11 monoclonal antibody and anti-rLFn polyclonal sera was investigated. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature both in-vitro and in-vivo. But combination of H11 with LETscFv (an scFv with VH and VL identical to H10 but lacking Fc region) could not abrogate the disease-enhancing character of H11 mAb. Therefore it was concluded that for suppression of disease enhancement, Fc portion was absolutely essential for interaction of H10 with H11. Our study indicates that the protective potential of an antibody depends equally on its idiotype/ antigen specificity and its isotype. A number of monoclonal and engineered antibodies are being explored as immunotherapeutics but it is absolutely essential to characterize each one for their individual and combined protective potential. Although new in the sphere of toxin-based diseases, it is extremely important to characterize the disease-enhancing nature of polyclonal as well as monoclonal antibodies. This is because several anti-viral therapeutics and vaccines have failed in the face of this phenomenon. The passive –immunotherapy thus needs to be well formulated to avoid any contraindications.

Keywords: immunotherapy, polyclonal, monoclonal, antibody-dependent disease enhancement

Procedia PDF Downloads 386
5 Biohydrogen Production from Rice Water Using Bacteria Isolated from Wetland Sediment

Authors: Jerry John T. M., Sylas V. P., Shijo Joy

Abstract:

Hydrogen is the most essential gas that can be used for many purposes. During the production of hydrogen using raw materials like Soil and leftover cooked rice water (kanjivellam), the major by-product formed is water. Soil is collected from three different places in kottayam district: Kallara, Meenachilar, and Athirampuzha. Collected samples are mixed with rice water and tested for traces of hydrogen using a biohydrogen sensor after 72 hours. The result was the presence of hydrogen in all the 3 samples. After streaking, PCR and gel electrophoresis detected the bacteria which produced the hydrogen. RGCB Thiruvananthapuram conducted the sequencing of the PCR resultant. And identified the bacterial strains. Five variants of Bacillus bacteria ( (1) Bacillus cereus strain JTM GenBank: OP278839.1 (2) Bacillus toyonensis strain JTM2 GenBank: OP278841.1 (3) Bacillus anthracis strain JTM_SR2989-3-R_H08 GenBank: OP278960.1 (4) Bacillus thuringiensis strain JRY1 GenBank: OP278976.1 (5) Bacillus anthracis strain JTM_SR2989-3-F_H07 GenBank: OP278959.1 ) are identified and successfully registered in NCBI Gen bank. These Bacillus bacteria are major types of Rhizobacteria that can form spores and can survive in the soil for a long time period under harsh environmental conditions. Also, plant growth is enhanced by PGPR (Plant growth promoting rhizobacteria) through the induction of systemic resistance, antibiosis, and competitive omission. The molecular sequencing was submitted to the NCBI Gen Bank, and the accession numbers were allotted for the bacterial cultures.

Keywords: bio hydrogen production, bacterial bio hydrogen production, plant related to bacillus bacteria., bacillus bacteria study

Procedia PDF Downloads 66
4 Biomedical Countermeasures to Category a Biological Agents

Authors: Laura Cochrane

Abstract:

The United States Centers for Disease Control and Prevention has established three categories of biological agents based on their ease of spread and the severity of the disease they cause. Category A biological agents are the highest priority because of their high degree of morbidity and mortality, ease of dissemination, the potential to cause social disruption and panic, special requirements for public health preparedness, and past use as a biological weapon. Despite the threat of Category A biological agents, opportunities for medical intervention exist. This work summarizes public information, consolidated and reviewed across the situational usefulness and disease awareness to offer discussion to three specific Category A agents: anthrax (Bacillus anthracis), botulism (Clostridium botulinum toxin), and smallpox (variola major), and provides an overview on the management of medical countermeasures available to treat these three (3) different types of pathogens. The medical countermeasures are discussed in the setting of pre-exposure prophylaxis, post-exposure prophylaxis, and therapeutic treatments to provide a framework for requirements in public health preparedness.

Keywords: anthrax, botulism, smallpox, medical countermeasures

Procedia PDF Downloads 76
3 Integrated Microsystem for Multiplexed Genosensor Detection of Biowarfare Agents

Authors: Samuel B. Dulay, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan

Abstract:

An early, rapid and definite detection for the presence of biowarfare agents, pathogens, viruses and toxins is required in different situations which include civil rescue and security units, homeland security, military operations, public transportation securities such as airports, metro and railway stations due to its harmful effect on the human population. In this work, an electrochemical genosensor array that allows simultaneous detection of different biowarfare agents within an integrated microsystem that provides an easy handling of the technology which combines a microfluidics setup with a multiplexing genosensor array has been developed and optimised for the following targets: Bacillus anthracis, Brucella abortis and melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei and pseudomallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis. The electrode array was modified via co-immobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated monopodal thiol. PCR products from these relevant biowarfare agents were detected reproducibly through a sandwich assay format with the target hybridised between a surface immobilised probe into the electrode and a horseradish peroxidase-labelled secondary reporter probe, which provided an enzyme based electrochemical signal. The potential of the designed microsystem for multiplexed genosensor detection and cross-reactivity studies over potential interfering DNA sequences has demonstrated high selectivity using the developed platform producing high-throughput.

Keywords: biowarfare agents, genosensors, multipled detection, microsystem

Procedia PDF Downloads 272
2 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 343
1 Developing Novel Bacterial Primase (DnaG) Inhibitors

Authors: Shanakr Bhattarai, V. S. Tiwari, Barak Akabayov

Abstract:

The plummeting number of infections and death is due to the development of drug-resistant bacteria. In addition, the number of approved antibiotic drugs by the Food and Drug Administration (FDA) is insufficient. Therefore, developing new drugs and finding novel targets for central metabolic pathways in bacteria is urgently needed. One of the promising targets is DNA replication machinery which consists of many essential proteins and enzymes. DnaG primase is an essential enzyme and a central part of the DNA replication machinery. DnaG primase synthesizes short RNA primers that initiate the Okazaki fragments by the lagging strand DNA polymerase. Therefore, it is reasonable to assume that inhibition of primase activity will stall DNA replication and prevent bacterial proliferation. We did the expression and purification of eight different bacterial DnaGs (Mycobacterium tuberculosis(Mtb), Bacillus anthracis (Ba), Mycobacterium smegmatis (Msmeg), Francisella tularencis (Ft), Vibrio cholerae (Vc) and Yersinia pestis (Yp), Staphylococcus aureus(Saureus), Escherichia coli(Ecoli)) followed by the radioactive activity assay. After obtaining the pure and active protein DnaG, we synthesized the inhibitors for them. The inhibitors were divided into five different groups, each containing five molecules, and the cocktail inhibition assay was performed against each DnaGs. The groups of molecules inhibiting the DnaGs were further tested with individual molecules belonging to inhibiting groups. Each molecule showing inhibition was titrated against the corresponding DnaGs to find IC50. We got a molecule(VS167) that acted as broad inhibitors, inhibiting all eight DnaGs. Molecules VS180 and VS186 inhibited seven DnaGs (except Saureus). Similarly, two molecules(VS 173, VS176) inhibited five DnaGs (Mtb, Ba, Ft, Yp, Ecoli). VS261 inhibited four DnaGs (Mtb, Ba, Ft, Vc). MS50 inhibited Ba and Vc DnaGs. And some of the inhibitors inhibited only one DnaGs. Thus we found the broad and specific inhibitors for different bacterial DnaGs, and their Structure-activity analysis(SAR) was done. Further, We tried to explain the similarities among the enzyme DnaGs from different bacteria based on their inhibition pattern.

Keywords: DNA replication, DnaG, okazaki fragments, antibiotic drugs

Procedia PDF Downloads 91