Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Taweechai Nuntawisuttiwong
2 Monomial Form Approach to Rectangular Surface Modeling
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications
Procedia PDF Downloads 1461 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation
Procedia PDF Downloads 234