Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: T. Praveenkumar
2 COVID-19: The Cause or the Confounder
Authors: Praveenkumar Natarajan
Abstract:
A 59-year-old male with no known co-morbidities was admitted to a private hospital for complaints of fever and cough and was diagnosed to haveCOVID-19. CT of the thorax revealed the involvement of 50% of the lungs. Screening ECG and ECHO were normal. The patient was treated with oxygen therapy and drugs and was discharged after 12 days of admission. Post-discharge, the patient remained symptom-free and continued his work. After one month, the patient developed a fever for three days, for which he took antipyretics. Subsequently, the patient developed sudden onset breathlessness, which rapidly progressed to grade 4 NYHA, and developed a cough as well. Suspecting COVID-19 reinfection, the patient visited a nearby hospital, where COVID–19 rt-PCR swabs turned out to be positive, and was referred to our hospital. On receiving, the patient had diffuse lung crepitations and a diastolic murmur in the neo-aortic area. CT thorax revealed pulmonary edema with areas of consolidation. ECHO revealed vegetation on the aortic valve with severe aortic regurgitation. Blood cultures were taken, which revealed the growth of Enterococcus faecalis. The diagnosis of infective endocarditis was made, and the patient was started on appropriate treatment. COVID–19 has effects on various systems, including the cardiovascular system. Even though infective endocarditis is common in the elderly with valvular heart disease, this patient had developed infective endocarditis in an apparently normal aortic valve. Infective endocarditis and COVID–19 can have similar presentations leading to diagnostic difficulties. COVID–19, affecting the heart valves causing valvulitis and predisposing them to the development of infective endocarditis, is also an area to be explored.Keywords: aortic regurgitation, COVID-19, infective endocarditis, valvulitis
Procedia PDF Downloads 1351 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 111