Search results for: T. Iakovleva
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: T. Iakovleva

2 Digitalize or Die-Responsible Innovations in Healthcare and Welfare Sectors

Authors: T. Iakovleva

Abstract:

Present paper suggests a theoretical model that describes the process of the development of responsible innovations on the firm level in health and welfare sectors. There is a need to develop new firm strategies in these sectors. This paper suggests to look on the concept of responsible innovation that was originally developed on the social level and to apply this new concept to the new area of firm strategy. The rapid global diffusion of information and communication technologies has greatly improved access to knowledge. At the same time, communication is cheap, information is a commodity, and global trade increases technological diffusion. As a result, firms and users, including those outside of industrialized nations, get early exposure to the latest technologies and information. General-purpose technologies such as mobile phones and 3D printers enable individuals to solve local needs and customize products. The combined effect of these changes is having a profound impact on the innovation landscape. Meanwhile, the healthcare sector is facing unprecedented challenges, which are magnified by budgetary constraints, an aging population and the desire to provide care for all. On the other hand, patients themselves are changing. They are savvier about their diseases, they expect their relation with the healthcare professionals to be open and interactive, but above all they want to be part of the decision process. All of this is a reflection of what is already happening in other industries where customers have access to large amount of information and became educated buyers. This article addresses the question of how ICT research and innovation may contribute to developing solutions to grand societal challenges in a responsible way. A broad definition of the concept of responsibility in the context of innovation is adopted in this paper. Responsibility is thus seen as a collective, uncertain and future-oriented activity. This opens the questions of how responsibilities are perceived and distributed and how innovation and science can be governed and stewarded towards socially desirable and acceptable ends. This article addresses a central question confronting politicians, business leaders, and regional planners.

Keywords: responsible innovation, ICT, healthcare, welfare sector

Procedia PDF Downloads 197
1 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 224