Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1
Search results for: Swapnali Sadhale
1 A Synergistic Approach to Enhance Rehabilitation Outcomes by Enhancing Real-Time Brain-Muscle Self-Regulation in Patients After Stroke.
Authors: Swapnali Sadhale, Ankita Mehendale, Jincy Rajan, Subhasis Banerji
Abstract:
Research Objectives: Brain-computer interfaces are being tested in different rehabilitation setups to train cognition or to help trigger neurostimulation, robotic movement of a limb or electrical stimulation of muscle. However, we find that translation to physical recovery is limited to gross joint movement with no resolution of behavioural compensation in the brain and muscle, making co-ordinated movements, and hence independent living, difficult. The objectives of this research is to use an integrated brain-muscle-computer interface to restore cognitive and physical function in one wearable system. The EEG and EMG wearables are used to observe in real-time the instantaneous brain-muscle responses of the patient while he/she attempts to do a movement or a task. Methodology used in Research: The synergistic brain-muscle platform, Synphne, consists of a Headgear (8-channel EEG capture device) and Arm Gear (8-channel EMG capture device) and a computer software that provides integrated, real-time feedback while running video-led instructions of various movements and tasks that a patient needs to watch and attempt to follow. Subjects with severe, moderate and mild disability were recruited as case studies. All had undergone prior neurorehabilitation with limited progress in grasping ability. A task such as writing with a pen was chosen as it is highly valued by patients who have lost this ability. Writing involves an integrated execution of cognitive ability (short-term memory, sequential planning, executive function) and fine motor skill, midline crossing and trunk stability. This task was to be attempted by the stroke-affected dominant arm on which the EMG wearable was worn. The qualifying criteria were: the inability to grasp a pen with a two-finger pinch with the affected dominant hand, a minimum 10% active flexion and extension movement in fingers, 50% pain-free passive range of motion of the fingers, wrist and elbow, ability to sit for 10 min at a time and respond to instructions from a computer screen supported by a video demonstrating the task. The routine started with simple grasping and transfer training with a pen of larger diameter that was comfortable for the subject while maintaining a stable, relaxed focus in the brain state, as shown in the EEG feedback. This was to be integrated with correct muscle firing in finger flexion muscles and the stabilization of the elbow and wrist through the EMG feedback. This was followed by a simple drawing task maintaining the same brain state and relaxed antagonist muscles in the writing arm. Once the arm stabilised in drawing, the subject was introduced to writing alphabets and numbers first on tracing and then without. Main Contributions of this Research: In conventional and tech-assisted rehabilitation, the biggest challenge is the return to independent living. Recovery of fine motor skills, which are critical to independent living, remains elusive to a large segment of the stroke population. We find that the integrated training of cognition and physical function is crucial to regaining this. This novel approach shows promise in helping close that gap.Keywords: stroke, neurorehabilitation, brain, wearables
Procedia PDF Downloads 0