Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Selemawit Mosazghi Gilazghi
2 Prevalence of Bovine Mastitis and Associated Risk Factors in Selected Dairy Farms in Zoba Anseba, Eritrea
Authors: Redie Kidane Ghebrehawariat, Betiel Habte Hadgu, Filmon Berhane Kahsay, Rim Berhane Fisehaye, Samuel Haile Kahsay, Saron Yemane Yosief, Selemawit Mosazghi Gilazghi
Abstract:
A cross-sectional study was conducted from 22 February to 9 April 2022 on small, medium, and large holder dairy farms to determine the bovine mastitis prevalence and associated risk factors in the Anseba region, Eritrea. A total of 34 dairy farms and 193 dairy cows were randomly selected. Dairy cows were physically examined for any change on the udder and milk; a California mastitis test was performed to check sub-clinical mastitis; a closed-ended semi-structured questionnaire composed of 28 variables/risk factors (21 management risk factors and 7 animal-level risk factors) was used to determine the risk factors responsible for clinical and sub-clinical mastitis in the dairy cows. The overall cow-level prevalence of mastitis was 147 (76.2%). The animal level prevalence rate of clinical and sub-clinical mastitis was found to be 22 (11.4%) and 125 (64.8%), respectively, while herd level prevalence both for clinical and subclinical mastitis was found to be 14 (41.2%) and 26 (76.5%) respectively. Based on the already set P-value, which is <0.05, a number of risk factors were found to have a significant relationship with the occurrence of clinical and sub-clinical mastitis. Generally, animal risk factors such as animal age, parity, injury on the udder or teat, and previous history of mastitis presence of injury on the udder and lactation stage were risk factors with a significant relationship with the occurrence of clinical and sub-clinical mastitis. On the other hand, management risk factors with a significant relationship to the occurrence of clinical and sub-clinical mastitis were herd size, failure to milk mastitic cow, at last, educational level, floor type, failure to use a towel, using one towel for more than one cow and failure to practice mastitis test. From a total of 772 quarters, 280 (36.3%) were found positive for sub-clinical mastitis using the California mastitis test; of these, 70 (9%) were weakly positive, 90 (11.7%) were distinct positive, and 120 (15.5%) were strongly positive. Furthermore, 13 (1.7%) quarters were blocked. Quarter level prevalence was right front 80 (41.5%), left front 64 (33.3%), right hind 69 (35.8%) and left hind 67 (34.7%). The study has shown that mastitis is a major problem for dairy farms and the findings suggested that mastitis is one of the limiting factors in increasing milk production. Subclinical mastitis was found to be a devastating problem, and it occurred in all three breeds of lactating dairy cattle. Therefore, farmers should work hard to avoid the above-mentioned risk factors to minimize the infection of their dairy cattle by mastitis and thereby increase their profit. On the other hand, the Ministry of Agriculture, through the extension unit, should work in close contact with the farmers to increase awareness of the economic importance of the disease and associated risk factors.Keywords: mastitis, prevalence, dairy cattle, Anseba, Eritrea
Procedia PDF Downloads 1261 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia
Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay
Abstract:
Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.Keywords: AquaCrop model, calibration, validation, simulation
Procedia PDF Downloads 66