Search results for: S. Rattani
3 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 2402 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1611 Multicenter Baseline Survey to Outline Antimicrobial Prescribing Practices at Six Public Sectortertiary Care Hospitals in a Low Middle Income Country
Authors: N. Khursheed, M. Fatima, S. Jamal, A. Raza, S. Rattani, Q. Ahsan, A. Rasheed, M. Jawed
Abstract:
Introduction: Antibiotics are among the commonly prescribed medicines to treat bacterial infections. Their misuse intensifies resistance, and overuse incurs heavy losses to the healthcare system in terms of increased treatment costs and enhanced disease burden. Studies show that 40% of empirically used antibiotics are irrationally utilized. The objective of this study was to evaluate prescribing pattern of antibiotics at six public sector tertiary care hospitals across Pakistan. Methods: A multicenter cross-sectional point prevalence survey (PPS) was conducted in selected wards of six public sector tertiary care hospitals in Pakistan as part of the Clinical Engagement program by Fleming Fund Country Grant Pakistan in collaboration with Indus Hospital & Health Network (IHHN) from February to March 2021, these included Jinnah Postgraduate Medical Center and Dr. Ruth K. M. Pfau Civil Hospital from Karachi, Sheikh Zayed Hospital Lahore, Nishtar Medical University Hospital Multan, Medical Teaching Institute Hayatabad Medical Complex Peshawar, and Provincial Headquarters Hospital Gilgit. WHO PPS methodology was used for data collection (Hospital, ward, and patient level data was collected). Data was entered into the open-source Kobo Collect application and was analyzed using SPSS (version 22.0). Findings: Medical records of 837 in-patients were surveyed, of which the prevalence of antibiotics use was 78.5%. The most commonly prescribed antimicrobial was Ceftriaxone (21.7%) which is categorized in the Watch group of WHO AWaRe Classification, followed by Metronidazole (17.3%), Cefoperazone/Sulbactam (8.4%), Co-Amoxiclav (6.3%) and Piperacillin/Tazobactam (5.9%). The antibiotics were prescribed largely for surgical prophylaxis (36.7%), followed by community-acquired infections (24.7%). One antibiotic was prescribed to 46.7%, two to 39.9%, and three or more to 12.5 %. Two of six (30%) hospitals had functional drug and therapeutic committees, three (50%) had infection prevention and control committees, and one facility had an antibiotic formulary. Conclusion: Findings demonstrate high consumption of broad-spectrum antimicrobials and emphasizes the importance of expanding the antimicrobial stewardship program. Mentoring clinical teams will help to rationalize antimicrobial use.Keywords: antimicrobial resistance, antimicrobial stewardship, point prevalence survey, antibiotics
Procedia PDF Downloads 103