Search results for: Otman Elhajjaji
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Otman Elhajjaji

4 Validation of Codes Dragon4 and Donjon4 by Calculating Keff of a Slowpoke-2 Reactor

Authors: Otman Jai, Otman Elhajjaji, Jaouad Tajmouati

Abstract:

Several neutronic calculation codes must be used to solve the equation for different levels of discretization which all necessitate a specific modelisation. This chain of such models, known as a calculation scheme, leads to the knowledge of the neutron flux in a reactor from its own geometry, its isotopic compositions and a cross-section library. Being small in size, the 'Slowpoke-2' reactor is difficult to model due to the importance of the leaking neutrons. In the paper, the simulation model is presented (geometry, cross section library, assumption, etc.), and the results obtained by DRAGON4/DONJON4 codes were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor and the experimental data. Criticality calculations have been performed to verify and validate the model. Since created model properly describes the reactor core, it can be used for calculations of reactor core parameters and for optimization of research reactor application.

Keywords: transport equation, Dragon4, Donjon4, neutron flux, effective multiplication factor

Procedia PDF Downloads 470
3 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 77
2 Heterogeneity of Genes Encoding the Structural Proteins of Avian Infectious Bronchitis Virus

Authors: Shahid Hussain Abro, Siamak Zohari, Lena H. M. Renström, Désirée S. Jansson, Faruk Otman, Karin Ullman, Claudia Baule

Abstract:

Infectious bronchitis is an acute, highly contagious respiratory, nephropathogenic and reproductive disease of poultry that is caused by infectious bronchitis virus (IBV). The present study used a large data set of structural gene sequences, including newly generated ones and sequences available in the GenBank database to further analyze the diversity and to identify selective pressures and recombination spots. There were some deletions or insertions in the analyzed regions in isolates of the Italy-02 and D274 genotypes. Whereas, there were no insertions or deletions observed in the isolates of the Massachusetts and 4/91 genotype. The hypervariable nucleotide sequence regions spanned positions 152–239, 554–582, 686–737 and 802–912 in the S1 sub-unit of the all analyzed genotypes. The nucleotide sequence data of the E gene showed that this gene was comparatively unstable and subjected to a high frequency of mutations. The M gene showed substitutions consistently distributed except for a region between nucleotide positions 250–680 that remained conserved. The lowest variation in the nucleotide sequences of ORF5a was observed in the isolates of the D274 genotype. While, ORF5b and N gene sequences showed highly conserved regions and were less subjected to variation. Genes ORF3a, ORF3b, M, ORF5a, ORF5b and N presented negative selective pressure among the analyzed isolates. However, some regions of the ORFs showed favorable selective pressure(s). The S1 and E proteins were subjected to a high rate of mutational substitutions and non-synonymous amino acids. Strong signals of recombination breakpoints and ending break point were observed in the S and N genes. Overall, the results of this study revealed that very likely the strong selective pressures in E, M and the high frequency of substitutions in the S gene can probably be considered the main determinants in the evolution of IBV.

Keywords: IBV, avian infectious bronchitis, structural genes, genotypes, genetic diversity

Procedia PDF Downloads 435
1 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 94