Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Nowfiya Humayoon
2 Addressing Sustainable Development Goals in Palestine: Conflict, Sustainability, and Human Rights
Authors: Nowfiya Humayoon
Abstract:
The Sustainable Development Goals were launched by the UNO in 2015 as a global initiative aimed at eradicating poverty, safeguarding the environment, and promoting peace and prosperity with the target year of 2030. SDGs are vital for achieving global peace, prosperity, and sustainability. Like all nations of the world, these goals are crucial to Palestine but challenging due to the ongoing crisis. Effective action toward achieving each Sustainable Development Goals (SDGs) in Palestine has been severely challenged due to political instability, limited access to resources, International Aid Constraints, Economic blockade, etc., right from the beginning. In the context of the ongoing conflict, there are severe violations of international humanitarian law, which include targeting civilians, using excessive force, and blocking humanitarian aid, which has led to significant civilian casualties, sufferings, and deaths. Therefore, addressing the Sustainable Development Goals is imperative in ensuring human rights, combating violations and fostering sustainability. Methodology: The study adopts a historical, analytical and quantitative approach to evaluate the impact of the ongoing conflict on SDGs in Palestine, with a focus on sustainability and human rights. It examines historical documents, reports of international organizations and regional organizations, recent journal and newspaper articles, and other relevant literature to trace the evolution and the on-ground realities of the conflict and its effects. Quantitative data are collected by analyzing statistical reports from government agencies, non-governmental organizations (NGOs) and international bodies. Databases from World Bank, United Nations and World Health Organizations are utilized. Various health and economic indicators on mortality rates, infant mortality rates and income levels are also gathered. Major Findings: The study reveals profound challenges in achieving the Sustainable Development Goals (SDGs) in Palestine, which include economic blockades and restricted access to resources that have left a substantial portion of the population living below the poverty line, overburdened healthcare facilities struggling to cope with the demands, shortages of medical supplies, disrupted educational systems, with many schools destroyed or repurposed, and children facing significant barriers to accessing quality education, damaged infrastructure, restricted access to clean water and sanitation services and limited access to reliable energy sources . Conclusion: The ongoing crisis in Palestine has drastically affected progress towards the Sustainable Development Goals (SDGs), causing innumerable crises. Violations of international humanitarian law have caused substantial suffering and loss of life. Immediate and coordinated global action and efforts are crucial in addressing these challenges in order to uphold humanitarian values and promote sustainable development in the region.Keywords: genocide, human rights, occupation, sustainable development goals
Procedia PDF Downloads 121 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 118