Search results for: Lilly Tennant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Lilly Tennant

3 A Study of Challenges Faced and Support Systems Available for Emirati Student Mothers Post-Childbirth

Authors: Martina Dickson, Lilly Tennant

Abstract:

The young Emirati female university students of today are the first generation of women in the UAE for whom higher education as become not only a possibility, but almost an expectation. Young women in the UAE today make up around 77% of students in higher education institutes in the country. However, the societal expectations placed upon these women in terms of early marriage, child-bearing and rearing are similar to those placed upon their mothers and grandmothers in a time where women were not expected to go to university. A large proportion of female university students in the UAE are mothers of young children, or become mothers whilst at the university. This creates a challenging situation for young student mothers, where two weeks’ maternity leave is typical across institutions. The context of this study is in one such institution in the UAE. We have employed a mixed method approach to gathering interview data from twenty mothers, and survey data from over one hundred mothers. The main findings indicate that mothers have strong desires for their institution to support them more, for example by the provision of nursery facilities and resting areas for new mothers, and giving them greater flexibility over course selections and schedules including the provision of online learning. However, the majority felt supported on a personal level by their tutors. The major challenges which they identified in returning to college after only two weeks’ leave included the inevitable health and lack of sleep issues when caring for a newborn, struggling to catch up with missed college work and handling their course load. We also explored the women's’ home support systems which were provided from a variety of extended family, spouses and paid domestic help.

Keywords: student mothers, challenges, supports, United Arab Emirates

Procedia PDF Downloads 219
2 Efficacy and Safety by Baseline A1c with Once-Weekly Dulaglutide in the AWARD Program

Authors: Alaa Mostafa, Samuel Dagogo-Jack, Vivian Thieu, Maria Yu, Nan Zhang, Dara Schuster, Luis-Emilio Garcia-Perez

Abstract:

Dulaglutide (DU), a once-weekly glucagon-like peptide-1 receptor agonist, was studied in the AWARD clinical trial program in adult patients with type 2 diabetes (T2D) and demonstrated significant hemoglobin A1c (A1c) reduction and potential for weight loss. To evaluate the efficacy and safety of DU 1.5 mg and DU 0.75 mg in patients with T2D by baseline A1c <8.5% or ≥8.5%, a post-hoc analysis was conducted on AWARD-1 to -6 and -8 at 6 months. Across 7 studies, 55% to 82% of the DU-treated patients had a baseline A1c <8.5%, and 18% to 45% had a baseline A1c ≥8.5%. The ranges of A1c reductions with baseline A1c <8.5% and ≥8.5%, respectively, were: DU 1.5 mg: -0.67% to -1.25% and -1.22% to -2.37%; DU 0.75 mg: -0.53% to -1.07% and -1.37% to -2.19%. The A1c reduction from the pooled analysis was greater in patients with baseline A1c ≥8.5% than patients with baseline A1c <8.5%, respectively: DU 1.5 mg: -1.86% and -1.02%; DU 0.75 mg: -1.75% and -0.83%. DU treatments were well tolerated among baseline A1c subgroups. Across the AWARD program, DU 1.5 mg and DU 0.75 mg demonstrated significant A1c reduction in both subgroups with an acceptable safety profile. Compared to patients with baseline A1c <8.5%, patients with baseline A1c ≥8.5% had greater A1c reduction. Disclosures: This study was supported and conducted by Eli Lilly and Company, Indianapolis, IN, USA.

Keywords: A1c reduction, dulaglutide, type 2 diabetes, weight loss

Procedia PDF Downloads 395
1 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 329