Search results for: Gudeg Sagan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Gudeg Sagan

2 The Impact of the Core Competencies in Business Management to the Existence and Progress of Traditional Foods Business with the Case of Study: Gudeg Sagan Yogyakarta

Authors: Lutfi AuliaRahman, Hari Rizki Ananda

Abstract:

The traditional food is a typical food of a certain region that has a taste of its own unique and typically consumed by a society in certain areas, one of which is Gudeg, a regional specialties traditional food of Yogyakarta and Central Java which is made of young jackfruit cooked in coconut milk, edible with rice and served with thick coconut milk (areh), chicken, eggs, tofu and sambal goreng krecek. However, lately, the image of traditional food has declined among people, so with gudeg, which today's society, especially among young people, tend to prefer modern types of food such as fast food and some other foods that are popular. Moreover, traditional food usually only preferred by consumers of local communities and lack of demand by consumers from different areas for different tastes. Thus, the traditional food producers increasingly marginalized and their consumers are on the wane. This study aimed to evaluate the management used by producers of traditional food with a case study of Gudeg Sagan which located in the city of Yogyakarta, with the ability of their management in creating core competencies, which includes the competence of cost, competence of flexibility, competence of quality, competence of time, and value-based competence. And then, in addition to surviving and continuing to exist with the existing external environment, Gudeg Sagan can increase the number of consumers and also reach a broader segment of teenagers and adults as well as consumers from different areas. And finally, in this paper will be found positive impact on the creation of the core competencies of the existence and progress of the traditional food business based on case study of Gudeg Sagan.

Keywords: Gudeg Sagan, traditional food, core competencies, existence

Procedia PDF Downloads 251
1 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 137