Search results for: Cang Yan
5 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 804 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 2503 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction
Authors: Yong Cang
Abstract:
RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection
Procedia PDF Downloads 1072 Roll Forming Process and Die Design for a Large Size Square Tube
Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu
Abstract:
This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming
Procedia PDF Downloads 3111 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles
Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng
Abstract:
Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.Keywords: antibiotics, biomechanical properties, bone cement, sustained release
Procedia PDF Downloads 257