Search results for: Ayal Siegel
8 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve
Procedia PDF Downloads 3317 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration
Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich
Abstract:
Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm
Procedia PDF Downloads 4296 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 2435 Determination of the Runoff Coefficient in Urban Regions, an Example from Haifa, Israel
Authors: Ayal Siegel, Moshe Inbar, Amatzya Peled
Abstract:
This study examined the characteristic runoff coefficient in different urban areas. The main area studied is located in the city of Haifa, northern Israel. Haifa spreads out eastward from the Mediterranean seacoast to the top of the Carmel Mountain range with an elevation of 300 m. above sea level. For this research project, four watersheds were chosen, each characterizing a different part of the city; 1) Upper Hadar, a spacious suburb on the upper mountain side; 2) Qiryat Eliezer, a crowded suburb on a level plane of the watershed; 3) Technion, a large technical research university which is located halfway between the top of the mountain range and the coast line. 4) Keret, a remote suburb, on the southwestern outskirts of Haifa. In all of the watersheds found suitable, instruments were installed to continuously measure the water level flowing in the channels. Three rainfall gauges scattered in the study area complete the hydrological requirements for this research project. The runoff coefficient C in peak discharge events was determined by the Rational Formula. The main research finding is the significant relationship between the intensity of rainfall, and the impervious area which is connected to the drainage system of the watershed. For less intense rainfall, the full potential of the connected impervious area will not be exploited. As a result, the runoff coefficient value decreases as do the peak discharge rate and the runoff yield from the storm event. The research results will enable application to other areas by means of hydrological model to be be set up on GIS software that will make it possible to estimate the runoff coefficient of any given city watershed.Keywords: runoff coefficient, rational method, time of concentration, connected impervious area.
Procedia PDF Downloads 3484 The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market
Authors: Wali Ullah, Muhammad Nishat
Abstract:
The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons.Keywords: yield curve, forecasting, emerging markets, Kalman filter, EGARCH
Procedia PDF Downloads 5383 Metastatic Polypoid Nodular Melanoma Management During The COVID-19 Pandemic
Authors: Stefan Bradu, Daniel Siegel, Jameson Loyal, Andrea Leaf, Alana Kurtti, Usha Alapati, Jared Jagdeo
Abstract:
Compared with all other variants of nodular melanoma, patients with polypoid nodular melanoma have the lowest 5-year survival rate. The pathophysiology and management of polypoid melanoma are scarcely reported in the literature. Although surgical excision is the cornerstone of melanoma management, treatment of polypoid melanoma is complicated by several negative prognostic factors, including early metastasis. This report demonstrates the successful treatment of a rapidly developing red nodular polypoid melanoma with metastasis using surgery and adjuvant nivolumab in a SARS-CoV-2-positive patient who delayed seeking care due to the COVID-19 pandemic. In addition to detailing the successful treatment approach, the immunosuppressive effects of SARS-2-CoV and its possible contribution to the rapid progression of polypoid melanoma are discussed. This case highlights the complex challenges of melanoma diagnosis and management during the COVID-19 pandemic.Keywords: covid-19, dermatology, immunotherapy, melanoma, nivolumab
Procedia PDF Downloads 2082 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 4091 Competition for Talent: Retaining Graduates in the Euregio Meuse-Rhine
Authors: Julia Reinold, Inge Hooijen, Christoph Meng, Melissa Siegel
Abstract:
This paper investigates whether or not students intend to stay in the Euregio Meuse-Rhine (EMR) after graduation taking into account the role of hard and soft locational factors, social factors as well as demographic aspects in shaping their mobility preferences. Since graduates are considered a convenient source of human capital in today’s knowledge based economy, it is crucial to understand what drives their mobility intentions in order to retain larger numbers of graduates. This is particularly true for peripheral regions, which need to compete with assumed more attractive economic centres. This paper adds a euregional perspective to the existing literature on graduate migration. Using survey data from 2015 from five higher education institutions in the EMR, this paper finds that mobility intentions are determined by students’ perceptions of the quality of life, openness and career opportunities in the euroregion. In addition, distance to the partner and other social ties such as family and friends influence migration intentions.Keywords: Euroregion, graduate migration, highly skilled migration, human capital
Procedia PDF Downloads 274