Search results for: Ashkan Chavoshi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: Ashkan Chavoshi

3 Land Lots and Shannon-Winner Index in Sarpolzahab Agro Ecosystems-Western Iran

Authors: Ashkan Asgari, Korous Khoshbakht, Saeid Soufizadeh

Abstract:

Various factors including land lots can affect biodiversity indices in Agricultural systems. Field study conducted to evaluate factors affecting crop diversity in Sarpolzahab in 2012. Required data were collected through direct observation of farms and filling questionnaires. Total numbers of 140 questionnaires were filled, SAS Software was used to analyse data and Ecological Methodology Program was applied to calculate Shannon-Winner index, subsequently. Results of study indicated that average number of land lots for each farmer was 2.78 and various from 2.2 in Rikhak Olia Village to 4.31 in Golam Kaboud Olia Village which shows small size of land lots due to separating larger lots by children of deceased farmers. The correlation between number of land lots and species biodiversity (0.308**) was significant and Shannon-Winner index was (0.262**). Therefore, according to the mentioned results one can assume that increase in number of land lots results in improving of the target index. Multiple land lots allow farmers to cultivate various crops which results in increasing biodiversity of crops in agro ecosystem. Subsequently, this increase will facilitate economic sustainability of the farmers and distribution of work force in the region throughout the year. The correlation of seasonal workers with biodiversity of crop species (0.256**) and Shannon-Winner (0.286**) was statistically significant and increasing number of seasonal work forces had resulted in improving crop biodiversity and decreasing dominant species or single crop farming systems. Vegetable farms which have a significant diversity, require a significant number of work forces which describes correlation between number of workers and diversity of species.

Keywords: agricultural systems, biodiversity indices, Shannon-Winner index, sustainability, rural

Procedia PDF Downloads 501
2 Study of Growth Behavior of Some Bacterial Fish Pathogens to Combined Selected Herbal Essential Oil

Authors: Ashkan Zargar, Ali Taheri Mirghaed, Zein Talal Barakat, Alireza Khosravi, Hamed Paknejad

Abstract:

With the increase of bacterial resistance to the chemical antibiotics, replacing it with ecofriendly herbal materials and with no adverse effects in the host body is very important. Therefore, in this study, the effect of combined essential oil (Thymus vulgaris-Origanum magorana and Ziziphora clinopodioides) on the growth behavior of Yersinia ruckeri, Aeromonas hydrophila and Lactococcus garvieae was evaluated. The compositions of the herbal essential oils used in this study were determined by gas chromatography-mass spectrometry (GC-MS) while, the investigating of antimicrobial effects was conducted by the agar-disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and bacterial growth curves determination relied on optical density (OD) at 630 nm. The main compounds were thymol (40.60 %) and limonene (15.98 %) for Thymus vulgaris while carvacrol (57.86 %) and thymol (13.54 %) were the major compounds in Origanum magorana. As regards Ziziphora clinopodiodes, α-pinene (22.6 %) and carvacrol (21.1 %) represented the major constituents. Concerning Yersinia ruckeri, disc-diffusion results showed that t.O.z (50 % Origanum majorana) combined essential oil was presented the best inhibition zone (30.66 mm) but it was exhibited no significant differences with other tested commercial antibiotics except oxytetracycline (P <0/05). The inhibitory activity and the bactericidal effect of the t.O.z, unveiled by the MIC= 0.2 μL /mL and MBC= 1.6 μL /mL values, were clearly the best between all combined oils. The growth behaviour of Yersinia ruckeri was affected by this combined essential oil and changes in temperature and pH conditions affected herbal oil performance. As regard Aeromonas hydrophila, its results were so similar to Yersinia ruckeri results and t.O.z (50 % Origanum majorana) was the best between all combined oils (inhibition zone= 26 mm, MIC= 0.4 μL /mL and MBC= 3.2 μL /mL, combined essential oil was affected bacterial growth behavior). Also for Lactococcus garvieae, t.O.z (50 % Origanum majorana) was the best between all combined oils having the best inhibition zone= 20.66 mm, MIC= 0.8 μL /mL and MBC= 1.6 μL /mL and best effect on inhibiting bacterial growth. Combined herbal essential oils have a good and noticeable effect on the growth behavior of pathogenic bacteria in the laboratory, and by continuing research in the host, they may be a suitable alternative to control, prevent and treat diseases caused by these bacteria.

Keywords: bacterial pathogen, herbal medicine, growth behavior, fish

Procedia PDF Downloads 42
1 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays

Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner

Abstract:

Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.

Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation

Procedia PDF Downloads 267