Search results for: Aniello Anastasio
3 Shelf Life of Frozen Processed Foods for Extended Durability
Authors: Manfreda Gerardo, Pasquali Frederique, Pepe Tiziana, Anastasio Aniello, Ianieri Adriana
Abstract:
The aim of the research was to evaluate the shelf life of a REPFED’s product (lasagna alla bolognese), developed as a product to be marketed fresh after defrosting. Three different samples were prepared: A, B and C, which presented differences in relation to the recipe, pasteurization technique and packaging on which the trend of the shelf-life indicator parameters was evaluated during a period of prolonged shelf life. The analytical plan involved the measurement of microbiological, chemical-physical and organoleptic parameters over 7 moments of storage selected in a period of 33 days. CBT, LAB, enterobacteria, E. coli, yeasts, molds, S. coagulase positive, B. cereus, Salmonella spp and L. monocytogenes, pH, Aw, Kreiss test, peroxides, atmosphere inside the packages, and organoleptic characteristics were determined. The results demonstrated the effect of post-packaging pasteurization on the shelf life of fresh from frozen products. However, the products pasteurized at 95°C in the absence of steam showed microbiological parameters that were not appropriate for an extended shelf life of up to 60 days. On the contrary, the samples pasteurized at 98°C with steam saturation and counterpressure showed values compatible with an extended shelf life. The results of the chemical-physical analyses highlighted how recipe and packaging affect the chemical-physical and organoleptic parameters. In conclusion, this preliminary study confirmed the effectiveness of post-packaging pasteurization treatments aimed at extending the shelf life of the product, helping the food company to occupy market niches even very distant from the production sites.Keywords: shelf life, REPFED’s product, extended durability, pasteurization
Procedia PDF Downloads 282 Valorization of Underutilized Fish Species Through a Multidisciplinary Approach
Authors: Tiziana Pepe, Gerardo Manfreda, Adriana Ianieri, Aniello Anastasio
Abstract:
The sustainable exploitation of marine biological resources is among the most important objectives of the EU's Common Fisheries Policy (CFP). Currently, Europe imports about 65% of its fish products, indicating that domestic production does not meet consumer demand. Despite the availability of numerous commercially significant fish species, European consumption is concentrated on a limited number of products (e.g., sea bass, sea bream, shrimp). Many native species, present in large quantities in the Mediterranean Sea, are little known to consumers and are therefore considered ‘fishing by-products’. All the data presented so far indicate a significant waste of local resources and the overexploitation of a few fish stocks. It is therefore necessary to develop strategies that guide the market towards sustainable conversion. The objective of this work was to valorize underutilized fish species of the Mediterranean Sea through a multidisciplinary approach. To this end, three fish species were sampled: Atlantic Horse Mackerel (Trachurus trachurus), Bogue (Boops boops), and Common Dolphinfish (Coryphaena hippurus). Nutritional properties (water %, fats, proteins, ashes, salts), physical/chemical properties (TVB-N, histamine, pH), and rheological properties (color, texture, viscosity) were analyzed. The analyses were conducted on both fillets and processing by-products. Additionally, mitochondrial DNA (mtDNA) was extracted from the muscle of each species. The mtDNA was then sequenced using the Illumina NGS technique. The analysis of nutritional properties classified the fillets of the sampled species as lean or semi-fat, as they had a fat content of less than 3%, while the by-products showed a higher lipid content (2.7-5%). The protein percentage for all fillets was 22-23%, while for processing by-products, the protein concentration was 18-19% for all species. Rheological analyses showed an increase in viscosity in saline solution in all species, indicating their potential suitability for industrial processing. High-quality and quantity complete mtDNA was extracted from all analyzed species. The complete mitochondrial genome sequences were successfully obtained and annotated. The results of this study suggest that all analyzed species are suitable for both human consumption and feed production. The sequencing of the complete mtDNA and its availability in international databases will be useful for accurate phylogenetic analysis and proper species identification, even in prepared and processed products. Underutilized fish species represent an important economic resource. Encouraging their consumption could limit the phenomenon of overfishing, protecting marine biodiversity. Furthermore, the valorization of these species will increase national fish production, supporting the local economy, cultural, and gastronomic tradition, and optimizing the exploitation of Mediterranean resources in accordance with the CFP.Keywords: mtDNA, nutritional analysis, sustainable fisheries, underutilized fish species
Procedia PDF Downloads 301 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 112