Search results for: Alphose Zingoni
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Alphose Zingoni

2 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure

Authors: Nosakhare Enoma, Alphose Zingoni

Abstract:

The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.

Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis

Procedia PDF Downloads 320
1 The Role of the Elastic Foundation Having Nonlinear Stiffness Properties in the Vibration of Structures

Authors: E. Feulefack Songong, A. Zingoni

Abstract:

A vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Although vibrations can be linear or nonlinear depending on the basic components of the system, the interest is mostly pointed towards nonlinear vibrations. This is because most structures around us are to some extent nonlinear and also because we need more accurate values in an analysis. The goal of this research is the integration of nonlinearities in the development and validation of structural models and to ameliorate the resistance of structures when subjected to loads. Although there exist many types of nonlinearities, this thesis will mostly focus on the vibration of free and undamped systems incorporating nonlinearity due to stiffness. Nonlinear stiffness has been a concern to many engineers in general and Civil engineers in particular because it is an important factor that can bring a good modification and amelioration to the response of structures when subjected to loads. The analysis of systems will be done analytically and then numerically to validate the analytical results. We will first show the benefit and importance of stiffness nonlinearity when it is implemented in the structure. Secondly, We will show how its integration in the structure can improve not only the structure’s performance but also its response when subjected to loads. The results of this study will be valuable to practicing engineers as well as industry practitioners in developing better designs and tools for their structures and mechanical devices. They will also serve to engineers to design lighter and stronger structures and to give good predictions as for the behavior of structures when subjected to external loads.

Keywords: elastic foundation, nonlinear, plates, stiffness, structures, vibration

Procedia PDF Downloads 134