Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: A. Sagaya
2 Manipulative Figurative Linguistic Violence of Contemporary National Anthems: A Socio-Cognitive Critical Discourse Analysis
Authors: Samson Olasunkanmi Oluga, Teh Chee Send, Gerard Sagaya Raj Rajo
Abstract:
It is ironical that the national anthems of many nations that are in the forefront of the global condemnation of violence of all forms have portions or expressions that propagate various forms of linguistic violence which advocate attacking opponents, going to war, shedding blood and sacrificing lives. These diametrically contradict contemporary yearnings for global tranquility and the ideals of the United Nations established for the maintenance of international peace and harmony aimed at making the world a safe haven for all and sundry. The linguistic violence of many national anthems is manipulatively constructed /presented via the instrumentality of the figurative or rhetorical language. This helps to linguistically embellish the violent ideas communicated and makes them sound somehow better or logical to the target audience with the intention of cognitively manipulating them to accept or rationalize such violent ideas. This paper, therefore, presents the outcome of a linguistic exploration/examination of national anthems which reveals elements or cases manipulative figurative linguistic violence in the anthems of twenty-one (21) nations. The paper details a Socio-Cognitive Critical Discourse Analysis of the manipulative figures of comparison, contrast, indirectness, association and sound used to convey the linguistic violence of the identified national anthems. Finally, the paper advocates the need for linguistic overhaul of affected anthems so that the language of anthems which epitomize nations can be pacific and in tandem with contemporary global trends.Keywords: national anthems, linguistic violence, figurative language, cognitive, manipulation, CDA
Procedia PDF Downloads 3321 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 285